在收集我们R语言数据可视化课程的学员问题时,发现咨询的比较多的就是如何使用R语言便捷的处理地理数据?最好能像tidyverse一样具有多个便捷的处理函数。
R包export可以轻松的将R绘制的图和统计表输出到 Microsoft Office (Word、PowerPoint和Excel)、HTML和Latex中,其质量可以直接用于发表。
今天我们再给大家介绍一个优秀的地图可视化绘制包-R-tanaka包(用于绘制具有3d阴影效果的地图可视化作品),主要涉及的内容如下:
上一篇中我们介绍了ggplot2的基本语法规则,为了生成各种复杂的叠加图层,需要了解ggplot2中一些基本的几何图形的构造规则,本文便就常见的基础几何图形进行说明;
摘要 Simple features是一种在计算机中编码矢量空间数据(点、线、面等)的标准化方法。sf包在R语言中引入了simple features对象,它基本具备和sp、rgeos、rgdal一样的矢量空间数据处理能力。本文主要描述此包的基本功能,其在R语言诸多扩展生态系统中的地位,以及在连接R语言与其他空间计算系统中的潜在价值。
上一篇文章,我们使用了Python 自定义IDW插值函数进行了IDW空间插值及可视化的plotnine、Basemap的绘制方法(Python - IDW插值计算及可视化绘制),本期推文我们将使用R-gstat进行IDW插值计算和使用ggplot2进行可视化绘制,主要涉及的知识点如下:
ggplot2可以用来创建优雅的图形,由于它的灵活,简洁和一致的接口,可以提供美丽、可直接用来发表的图形,吸引了许多用户,特别是科研领域的用户。ggplot2使用grid包来提供一系列的高水平的函数,并将其延伸为图形语法,即独立指定绘图组件,并将它们组合起来,以构建我们想要的任何图形显示。图形语法包含6个主要成分:data, transformations, element, scales, guide和 coordinate system。图层图形语法源于多层数据构建图形的想法。它定义了下表中的图形组分:data, aesthetic mappings, statistical transformations, geometric objects, position adjustment, scales, coordinate system 和 faceting(数据、几何映射、统计变换、几何对象、位置调整、比例、坐标和面)。数据、几何映射、统计变换、几何对象、位置调整形成一个图层,一个图可以有多个图层。
1. https://www.cnblogs.com/lonelyxmas/p/5722260.html
我们都喜欢有图片的网页,图片很美好,很有趣,同时它涵盖了丰富的信息。所以,在加载网页时,大部分流量被图像资源所占据(平均60%,数据可能不准确)。
大家好,在这里给大家介绍一下使用ggplot2绘图调色的几种小方法。正所谓绘图十分钟,调色一小时。图片的配色直接决定了图片质量的好坏。下面讲一下我平时绘图用到的调色工具。
本期将推出一篇关于栅格(Raster)数据的R语言可视化的绘制教程,其目的也是为大家提供绘图思路。本期绘制的数据为30m的土地利用(land use)数据,具体区域为广州市。主要内容如下:
本文介绍在ArcGIS下属的ArcMap软件中,基于Mosaic工具,批量对大量栅格遥感影像文件加以拼接、镶嵌的方法。
继续“一图胜千言”系列,箱线图通过绘制观测数据的五数总括,即最小值、下四分位数、中位数、上四分位数以及最大值,描述了变量值的分布情况。箱线图能够显示出离群点(outlier),通过箱线图能够很容易识别出数据中的异常值。
在本课中需要制作与每个样本中的平均表达量相关的多个图,还需要使用所有可用的metadata来适当地注释图表。
今天,随着数据量的不断增加,数据可视化成为将数字变成可用的信息的一个重要方式。R语言提供了一系列的已有函数和可调用的库,通过建立可视化的方式进行数据的呈现。在使用技术的方式实现可视化之前,我们可以先和AI科技评论一起看看如何选择正确的图表类型。 作者 Dikesh Jariwala是一个软件工程师,并且在Tatvic平台上编写了一些很酷很有趣的程序。他用API编写了第一版Price Discovery,AI科技评论对他所写的这篇文章做了编译,未经许可不得转载。 如何选择正确的图表类型 四种可选择的基本
在仅有图像及对应位姿作为输入时对三维物体或场景实现自由视点合成是一个重要的任务。最近,基于 NeRF 的方法提出了有力的场景表征方式,并在这一任务上实现了 state-of-the-art 的质量。但与此同时,这一方法在场景训练过程中所需要的大量时间导致其难以应用到许多实际场景中。尽管后续许多工作在测试阶段提出了加速渲染的方法,但在训练过程中加快场景收敛速度方面进行的工作要么在效率方面提升较小,要么在合成质量方面出现了严重的损失。
本章将教您如何使用ggplot2可视化您的数据。 R有几个用于制作图形的系统,但ggplot2是最优雅和最通用的系统之一。 ggplot2实现了图形语法,它是一个用于描述和构建图形的系统。如果您想在开始之前了解更多关于ggplot2理论基础的内容,我建议您阅读“The Layered Grammar of Graphics”,
上节学习了ggplot2的基础作图,并掌握了基本的作图模板。但是每次作图只有两个变量映射到了图形中,如下图:
R 作为入门级编程语言,被经常运用在数据整理、数据可视化、以及机器学习中。 本篇文章将主要介绍在R中如何可视化数据 (基础+进阶)。 R绘图的原理 使用R绘图,我们需要在脑海中明确几个必要元素。首先,需要有一张空白的画布, 如下图所示。其次,我们需要根据数据确定X轴、Y轴,以及X轴Y轴的取值范围,因为一个平面直角坐标系在R绘图过程中是必不可少的。接下来,我们就可以选择适当的图表类型(折线图、柱状图、点状图等),并根据数据坐标在坐标系中描绘数据。最后,我们还可以在画布上添加额外信息,例如图表名称,图例等,当然
ggthemr为ggplot2提供了近20种主题,可以直接使用,也可以根据需要设置配色,或改变图表细节。
文章来源:"Preoperative immune landscape predisposes adverse outcomes in hepatocellular carcinoma patients with liver transplantation" (2021,npj Precision Oncology),数据与代码全部公开在https://github.com/sangho1130/KOR_HCC。
randomcoloR和paletteer的使用方式类似,都提供了直观的函数来生成和应用颜色方案。randomcoloR 包可以生成随机的颜色方案,非常适合当你需要快速创建一个颜色方案时使用。
ggplot2 包提供了一套基于图层语法的绘图系统,它弥补了 R 基础绘图系统里的函数缺乏一致性的缺点,将 R 的绘图功能提升到了一个全新的境界。ggplot2 中各种数据可视化的基本原则完全一致,它将数学空间映射到图形元素空间。想象有一张空白的画布,在画布上我们需要定义可视化的数据(data),以及数据变量到图形属性的映射(mapping)。
upset plot我们已经介绍了多种画法,包括最流行的UpsetR,还介绍了使用complexHeatmap包画upset plot,以及ggupset包。这些包各有各的特色,基本用法差不多,在一些组合图形方面各有不同,大家可以翻看之前的文章。
今天分享R语言中的柱形图,所有图表语法都基于ggplot2包中的ggplot函数完成 。 其实R语言本身就带有各种作图函数,比如plot、bar、pie等,而且语法非常简单明了,为什么还要用ggplot2这种语法独立性很强、自成体系的作图包来作图呢? 一个例子就能感受到: plot(mpg$cty,mpg$hwy)#R语言内置散点图函数(无需加载任何辅助工具包) ggplot(mpg,aes(cty, hwy)) + geom_point(colour="steelblue")+labs(x = "City
R具有强大的统计计算功能和便捷的数据可视化系统。目前R主要支持四套图形系统:基础图形(base)、网格图形(grid)、lattice图形和ggplot2。其中ggplot2凭借强大的语法特性和优雅的图形外观,逐渐成为R中数据可视化的主流选择。
第一个要介绍的是一个R包,叫做RColorBrewer。该包提供了一系列的色板,包括渐变的颜色和不同颜色的组合搭配(见下图)。
很多机器学习的模型都是在图片上操作,但是忽略了图像其实是3D物体的投影,这个过程叫做渲染。能够使模型理解图片信息可能是生成的关键,但是由于光栅化涉及离散任务操作,渲染过程不是可微的,因此不适用与基于梯度的学习方法。这篇文章提出了DIR-B这个框架,允许图片中的所有像素点的梯度进行分析计算。方法的关键在于把前景光栅化当做局部属性的加权插值,背景光栅化作为基于距离的全局几何的聚合。通过不同的光照模型,这个方法能够对顶点位置、颜色、光照方向等达到很好的优化。此项目有两个主要特点:单图像3D物体预测和3D纹理图像生成,这些都是基于2D监督进行训练的。
目录 前言 图像渲染 总结 参考链接 一、前言 前面几篇文章讲解了如何使用Geotrellis进行数据处理、瓦片生成等,今天主要表一下如何使用Geotrellis进行栅格渲染。 昨日完成了两种数据叠加生成瓦片的工作,然而在进行瓦片渲染的时候始终得不到想要的漂亮的颜色效果,由于这块代码是从之前Geotrellis官方DEMO中拷贝过来的,从未进行深究,所以折腾半天也没能实现,无奈那么就看源代码吧,在源代码中找到了这样一篇文档(rendering.md),里面详细讲述了在系统中如何直
但绝大部分小伙伴仍然是选择躺平,不愿意动手实战,提高自己。对这样的小白来说,各种拥有操作界面的软件可能是更适合,比如orgin和prism等等,其实R里面也有类似的骚操作,比如新手绘图一站式R包 ggpubr ,你就可以看成是一个商业化拥有操作界面的软件:
本文将简要盘点R中常用的可视化包,并通过简要介绍包的特点来帮助读者深入理解可视化包。
ggplot2是R语言最流行的第三方扩展包,是RStudio首席科学家Hadley Wickham读博期间的作品。根据其绘图理念,图形由以下几个模块组成:
随着科技的发展,我们生活中生产的数据日益增加,数据可视化变得至关重要!通过大数据的可视化,使我们更能读懂其中的奥秘!
但绝大部分小伙伴仍然是选择躺平,不愿意动手实战,提高自己。对这样的小白来说,各种拥有操作界面的软件可能是更适合,比如orgin和prism等等,其实R里面也有类似的骚操作,比如新手绘图一站式R包ggstatsplot,你就可以看成是一个商业化拥有操作界面的软件:
计算机中描述图形信息的两大系统是栅格图形「又称位图」(raster graphics)和矢量图形(vector graphics)。下述,对栅格图形和矢量图形进行对比。
【1.当不确定自己输入的代码是否正确时,可以用attach()括号内填入你想使用的数据,这样当你想用a数据里面的某列名字时,可以直接用Tab打出他的名字并且不会出错
先从 QGIS 中下载了苏州市部分主城区的天地图图像,参考系为3857,空间分辨率为0.5米,共1.6G。
在生物领域我们常常使用R语言对数据可视化。在对数据可视化的时候,我们需要明确想要展示的信息,从而选择最为合适的图突出该信息。本系列文章将介绍多种基于不同R包的作图方法,希望能够帮助到各位读者。
可以使用函数geom_line()、geom_step()或geom_path()。
ggplot2是R语言中四大著名绘图框架之一,且因为其极高的参数设置自由度和图像的美学感,即使其绘图速度不是很快,但丝毫不影响其成为R中最受欢迎的绘图框架;ggplot2的作者是现任Rstudio首席科学家的Hadley Wickham,ggplot2基于Leland Wilkinson在Grammar of Graphics(图形的语法)中提出的理论,取首字母缩写再加上plot,于是得名ggplot,末尾的2是因为Hadley写包的一个习惯——对先前的版本不满意便写一个新版本的名称不变仅在末尾加上2,如reshape2等;
参见:https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/#prep(挑选的翻译了全文,并结合了一些自己的经验)
目录 前言 实现过程 总结 一、前言 上一篇文章介绍了如何使用Geotrellis渲染单波段的栅格数据,已然很是头疼,这几天不懈努力之后工作又进了一步,整清楚了如何使用Geotrellis将多个(3个)波段的栅格数据渲染成真彩色,废话不多说,进入正题。 二、实现过程 其实基本延续上一篇文章的思路,多波段真彩色就是要将三个波段数据分别作为rgb组合起来得到rgb值进行真彩色渲染。所以与单波段不同的是需要提前获取三个波段的整体信息,以及对波段进行rgb合并。 2.1 获取三个波段整体
虽然「调整尺寸」、「裁剪」和「变形」可用来创建有趣的图像效果,但画布还有另一个更强大的特性:「像素处理」。通过访问 2D 渲染上下文的各个像素,我们就能够得到每一个像素的颜色和阿尔法值等信息。我们还能够修改每一个像素的颜色,使之显示出截然不同的效果,后续将介绍这个功能。
本期推文我们绘制不常见的双变量主题地图,该类地图可以很好的在地图上用颜色展示两个变量的信息,相较于单一变量映射地图,此类地图表达的信息更加丰富和全面。本期推文主要涉及的内容如下:
今天跟大家分享ggplot图表系统中形状。 在ggplot函数系统中,形状是一类重要的映射属性,如同颜色一样,它可以被赋予给变量,当然也可以直接指定实际的形状类别。 library(ggplot2) library(reshape2) data<-data.frame(Name = c("苹果","谷歌","脸书","亚马逊","腾讯"),Company = c("Apple","Google","Facebook","Amozon","Tencent"),Sale2013 = c(5000,3500,23
拼图:par里的mfrow, grid.arrange, cowplot, patchwork
查看每列的非重复值及每个值的重复次数(直接用base的table(mpg$manufacturer)感觉效果类似)
不知不觉,Excel图表插件EasyCharts已经面世两年啦,今天突然发现百度网盘中的下载次数居然达到近4万,在这里非常感谢大家对EasyCharts的厚爱。由于工作太忙,时间有限,很多用户的问题也未能及时回答与解决,实在抱歉。现将该软件开源到Github上,有兴趣的朋友可以进一步开发与使用。
领取专属 10元无门槛券
手把手带您无忧上云