首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R:遍历句子中的单词,并给出某个单词在句子中的位置

遍历句子中的单词,并给出某个单词在句子中的位置,可以通过以下步骤实现:

  1. 将句子分割成单词:使用字符串的split()方法将句子按照空格分割成单词列表。
  2. 遍历单词列表:使用循环遍历单词列表,同时记录当前单词在列表中的索引位置。
  3. 检查目标单词:在遍历过程中,判断当前单词是否与目标单词相同。如果相同,则记录当前位置。
  4. 返回结果:返回目标单词在句子中的位置。

以下是一个示例代码:

代码语言:txt
复制
def find_word_position(sentence, target_word):
    words = sentence.split()
    position = []
    for index, word in enumerate(words):
        if word == target_word:
            position.append(index)
    return position

# 示例用法
sentence = "I love programming and programming loves me"
target_word = "programming"
result = find_word_position(sentence, target_word)
print(f"The word '{target_word}' is found at position(s): {result}")

输出结果:

代码语言:txt
复制
The word 'programming' is found at position(s): [2, 4]

在这个例子中,句子是"I love programming and programming loves me",目标单词是"programming"。通过遍历单词列表,我们找到了目标单词在位置2和位置4的位置。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

翻转句子中单词的顺序

题目:输入一个英文句子,翻转句子中单词的顺序,但单词内字符的顺序不变。句子中单词以空格符隔开。为简单起见,标点符号和普通字母一样处理。 例如输入“I am a student.”...由于本题需要翻转句子,我们先颠倒句子中的所有字符。这时,不但翻转了句子中单词的顺序,而且单词内字符也被翻转了。我们再颠倒每个单词内的字符。...翻转“I am a student.”中所有字符得到“.tneduts a ma I”,再翻转每个单词中字符的顺序得到“students. a am I”,正是符合要求的输出。  ...else { pEnd ++; } } return pData; }  在英语句子中...,单词被空格符号分隔,因此我们可以通过扫描空格来确定每个单词的起始和终止位置。

1.7K70
  • Excel公式练习42: 统计句子中满足条件的单词个数

    本次的练习是:如下图1所示,在单元格A1中有一段英文文本,其中可能包含标点符号或不包含标点符号,在单元格B1中输入一个公式,识别文本中包含五个元音字母的单词,统计出这些单词的个数。 ?...图1 注意,统计的单词应满足: 1. 单词中包含全部五个元音字母 2. 这五个元音字母在单词中从左至右出现的顺序是a、e、i、o、u 3....这五个元音字母在单词中只出现一次 在图1中,红色字体的单词满足条件,而黑色斜体的单词虽然包含全部的五个元音字母但由于顺序不符合要求,因此不满足条件。 先不看答案,自已动手试一试。...Arry2将生成由A1中的单词组成的数组,其运行原理在本系列前面的文章中已作详细讲解,有兴趣的朋友可查阅参考。...,用来确定字符串中某个字符有多少个:使用原始字符串的长度减去剔除掉指定字符后的字符串的长度。

    1.5K30

    重新排列句子中的单词(桶排序)

    题目 「句子」是一个用空格分隔单词的字符串。给你一个满足下述格式的句子 text : 句子的首字母大写 text 中的每个单词都用单个空格分隔。...请你重新排列 text 中的单词,使所有单词按其长度的升序排列。 如果两个单词的长度相同,则保留其在原句子中的相对顺序。 请同样按上述格式返回新的句子。...示例 1: 输入:text = "Leetcode is cool" 输出:"Is cool leetcode" 解释:句子中共有 3 个单词,长度为 8 的 "Leetcode" , 长度为 2 的...输出需要按单词的长度升序排列,新句子中的第一个单词首字母需要大写。..."keep" 4 个字母,因为存在长度相同的其他单词, 所以它们之间需要保留在原句子中的相对顺序。 "calm" 4 个字母。 "code" 4 个字母。

    99830

    在 Swift 中实现字符串分割问题:以字典中的单词构造句子

    如果大家有建议和意见欢迎在文末留言,我们会尽力满足大家的需求。难度水平:困难摘要本篇文章将探讨如何在 Swift 中解决字符串分割问题,即将给定字符串根据字典中的单词构造出所有可能的句子。...描述给定一个字符串 s 和一个字符串列表 wordDict(作为字典),我们需要将字符串 s 划分为多个子串,使每个子串均在 wordDict 中,并返回所有可能的句子。字典中的单词可以重复使用。...我们使用递归的方式遍历所有可能的分割点,并将中间结果缓存以避免重复计算。核心思路:遍历字符串的前缀部分,检查它是否在字典中。如果是,则递归处理剩余部分。将递归结果与当前前缀拼接成完整的句子。...如果前缀在字典中,则递归处理后缀。最终将前缀和后缀的结果拼接成句子。拼接结果 对于每种可能的分割,将前缀与后缀的句子组合成完整句子。返回所有可能的句子。...每次递归处理子串,并尝试所有分割点,最坏情况下复杂度为 O(2^n)。优化部分: 由于使用记忆化缓存了中间结果,实际复杂度降低到 O(n * k),其中 n 是字符串长度,k 是字典中单词的数量。

    12922

    程序员面试50题(3)—翻转句子中单词的顺序

    题目:输入一个英文句子,翻转句子中单词的顺序,但单词内字符的顺序不变。句子中单词以空格符隔开。为简单起见,标点符号和普通字母一样处理。 例如输入“I am a student.”...分析:由于编写字符串相关代码能够反映程序员的编程能力和编程习惯,与字符串相关的问题一直是程序员笔试、面试题的热门题目。本题也曾多次受到包括微软在内的大量公司的青睐。...由于本题需要翻转句子,我们先颠倒句子中的所有字符。这时,不但翻转了句子中单词的顺序,而且单词内字符也被翻转了。我们再颠倒每个单词内的字符。...由于单词内的字符被翻转两次,因此顺序仍然和输入时的顺序保持一致。 还是以上面的输入为例子。...翻转“I am a student.”中所有字符得到“.tneduts a ma I”,再翻转每个单词中字符的顺序得到“students. a am I”,正是符合要求的输出。

    91660

    菜鸟的每日力扣系列——2047. 句子中的有效单词数

    句子中的有效单词数 如果一个单词是有效单词它需要满足"[a-z]-[a-z]"这样的格式,由小写字母组成、至多在中间有一个连字符、至多有一个'.,!'在末尾、单词间用' '分开。...: 至多出现一次(str); ^(str): 以(str)开头; (str)$: 以(str)结尾; [str]: 出现str中的某个字符; [a - z]: a - z中的任意一个字符 import...True;遍历sentence字符串,如果包含数字或者在非末尾处出现'.,!'...则表明该单词无效;再来看遇到连字符的情况,如果连字符已经出现过(flag=True)或者连字符出现在开头或末尾处,又或者连字符连接的左/右端不止有小写字母,以上的所有情况均构不成有效单词。...将上述判断的结果用bool值返回,并统计为True即1的个数,就是最终结果有效单词数。

    39320

    MixCSE:困难样本在句子表示中的使用

    ,同时,随机采样负样本对于句子表示是无效的。...因此,才会有一系列的论文旨在解决各向异性,比如bert-flow、bert-whitening。 对比学习在句子表示中的使用? ​...Kim, Yoo, and Lee利用bert的隐含层表示和最后的句嵌入构建正样本对。SimCSE 使用不同的dropout mask将相同的句子传递给预训练模型两次,以构建正样本对。...目前的一些模型主要关注的是在生成正样本对时使用数据增强策略,而在生成负样本对时使用随机采样策略。在计算机视觉中,困难样本对于对比学习是至关重要的,而在无监督对比学习中还没有被探索。...该方法在训练过程中不断地注入人工困难负特征,从而在整个训练过程中保持强梯度信号。 ​ 对于锚特征 ,通过混合正特征 和随机负特征 构建负特征: 是一个超参数,用于控制混合的程度。

    1.9K20

    JavaScript | 获取数组中的单词并统计出现次数

    HTML5学堂(码匠):如何通过JavaScrip实现数组元素的查找?在一个数组当中,找到所有的单词,并统计每个单词出现的次数。...功能需求 在一个自定义数组当中,包含多个单词,请使用JavaScipt获取数组中的每个单词,并统计出每个单词出现的次数。...相关知识 对象属性的两种表示方法 对于对象来说,可以使用“对象.属性”的方法来表示,也可以使用“对象[属性]”的方法来表示。 ? for in循环 for-in循环用于遍历对象中的所有属性和属性值。...通过for循环,检测数组中的每个值是否在obj中存在,如果不存在,则设置这个属性,并将属性值赋值为1,如果当前obj中已存在相应单词,则令属性值+1。 3....到循环结束,即可获得到所有的单词以及相应单词的个数。 4. 通过for-in循环,遍历并输出对象中的所有属性和属性值。 备注:实现该功能需求的方法有多种,也可以通过其他手段或方法来实现。

    5.1K70

    TUPE :重新思考语言预训练中的位置编码

    特别是在预训练模型中,如BERT,通常在句子后面附加一个特殊的符号[CLS]。大家普遍认为这个符号是用来从所有位置接收和总结有用信息的,[CLS]的上下文表示将被用作下游任务中句子的表示。...由于[CLS]符号的作用不同于自然包含语义的规则词,我们认为,如果把它的位置当作词在句子中的位置来对待,它将是无效的。...不难看出,第一项和最后一项描述了一对单词或位置之间的同类关系。但是,第二和第三项使用位置(单词)作为查询来获取由单词(位置)组成的键。很少有证据表明,某个位置和某个词一定有很强的关联。...从位置上解开[CLS]符号 尽管句子中的单词具有局部依赖关系,然而,Transformer模型的输入序列并不总是一个自然的句子。 Bert中,一个特殊的符号[CLS]通常附加在句子的开头。...由于[CLS]符号具有独特的作用,不同于其他自然包含语义意义的词语,因此,我们也可以在注意模块中对[CLS]符号给出不同的表述方式:如果仍然对[CLS]符号使用相对位置编码 ,注意力模型很可能会使

    2.1K30

    CS224n 笔记1-自然语言处理与深度学习简介1 自然语言处理简介2 词向量(Word Vectors)3 基于奇异值分解(SVD)的方法4 基于迭代的算法-Word2vec

    所以让我们看看第一个词向量并且也可以说是最简单的,one-hot向量。将每个单词表示成IR|V|x1向量,这个词向量就是有很多0和一个1组成(1的位置就是该单词在排序英文出现的索引位置)。...这样,能够在词汇表中给出每个单词的k维表示方法。 对X应用SVD: ? 通过选择第一个k维奇异来减少维度: ?...然后,在一定的目标上训练模型。在每次迭代中,我们都运行模型,评估错误,并遵循一个规则,对引起模型错误的参数进行更新替换。因此我们最终学习了单词向量。...并且这种简单句子例子实际上出现的概率会很高。所以,我们尝试使句子出现的概率取决于每个单词和相邻单词组成的单词对的概率。我们将这种方法称为二元语言模型(Bigrams)并表示为: ?...在模型汇没有单词的输出表示,相反,图中的每个节点(除了根节点和叶节点)都是与一个模型学习的向量有关系。 在方法中,在给出单词w的词向量wi后,则单词w的概率为P(w|wi.)

    1K30

    深度学习中的注意力机制

    而语义编码C是由句子Source的每个单词经过Encoder 编码产生的,这意味着不论是生成哪个单词, 还是 ,其实句子Source中任意单词对生成某个目标单词yi来说影响力都是相同的,这是为何说这个模型没有体现出注意力的缘由...上面的例子中,如果引入Attention模型的话,应该在翻译“杰瑞”的时候,体现出英文单词对于翻译当前中文单词不同的影响程度,比如给出类似下面一个概率分布值: (Tom,0.3)(Chase,0.2)...,一般的做法中,g函数就是对构成元素加权求和,即下列公式: 其中, 代表输入句子Source的长度, 代表在Target输出第i个单词时Source输入句子中第j个单词的注意力分配系数,而 则是Source...一般在自然语言处理应用里会把Attention模型看作是输出Target句子中某个单词和输入Source句子每个单词的对齐模型,这是非常有道理的。...图14 图片生成句子中每个单词时的注意力聚焦区域 图15给出了另外四个例子形象地展示了这种过程,每个例子上方左侧是输入的原图,下方句子是人工智能系统自动产生的描述语句,上方右侧图展示了当AI系统产生语句中划横线单词的时候

    7.2K51

    【NLP】Attention Model(注意力模型)学习总结

    人脑的注意力模型,说到底是一种资源分配模型,在某个特定时刻,你的注意力总是集中在画面中的某个焦点部分,而对其它部分视而不见。...当我们人在看一样东西的时候,我们当前时刻关注的一定是我们当前正在看的这样东西的某一地方,换句话说,当我们目光移到别处时,注意力随着目光的移动也在转移,这意味着,当人们注意到某个目标或某个场景时,该目标内部以及该场景内每一处空间位置上的注意力分布是不一样的...而语义编码C是由句子X的每个单词经过Encoder 编码产生的,这意味着不论是生成哪个单词,y1,y2还是y3,其实句子X中任意单词对生成某个目标单词yi来说影响力都是相同的,没有任何区别(其实如果Encoder...图14 图片生成句子中每个单词时的注意力聚焦区域   图15给出了另外四个例子形象地展示了这种过程,每个例子上方左侧是输入的原图,下方句子是人工智能系统自动产生的描述语句,上方右侧图展示了当AI系统产生语句中划横线单词的时候...比如当输出单词dog的时候,AI系统会将注意力更多地分配给图片中小狗对应的位置。 ? 图15 图像描述任务中Attention机制的聚焦作用 ?

    1.8K31

    利用Word Embedding自动生成语义相近句子

    自然语言生成也是NLP中重要的一个方面,将来的计算机一定能够吟诗作对、写书画画,具有创造性,能够生成有创意的文化作品,让我们闭上眼一起来畅想一下美好的未来:在北京零下三十度的天气里,一层窗户玻璃之隔,好似天堂地狱之分...让我们鼓起革命主义大无畏精神,在研发雷区里散步,科学血池中游泳,听起来挺骇人,但是我的意思是咱们脚踏实地一步一步来,今天的文章先讨论解决一个简单的问题:假设你给出一句汉语句子或者短语,怎么让机器自动生成和它语义相关的句子...(WE“教练”,WE“领队”) =0.81 Cosine(WE“星期二”,WE“星期四”) =0.93 于是乎,对于输入句子的某个单词,我们可以从所有其它单词中找出和这个单词语义最接近的一部分单词...第三步,对某个单词W找出语义最接近的单词列表后对其进行过滤,过滤规则是:根据词性过滤,把这些单词中词性和W相同的留下来,不同的过滤掉。...接下来,通过上述办法,输入句子中的每个单词都找出了对应的语义接近且词性相同的单词列表。下面机器该真正地生成句子了。

    1.6K30

    解密:OpenAI和DeepMind都用的Transformer是如何工作的

    当你在第二句中读到这支乐队时,你知道它指的是「The Transformers」乐队。这对翻译任务可能非常重要。此外,还有很多这样的例子,某句中的某个单词指的是前面句子中的单词。...对 RNN 来说,每个单词都有一个对应的隐藏状态,并且被一直传递给解码阶段,而不只是将整个句子编码在一个隐藏状态中。然后,在 RNN 的每一步中都会利用这些隐藏状态进行解码。...下面的动图显示了完整的工作流程: ? 绿色显示的步骤被称为编码阶段,而紫色显示的步骤则是解码阶段。 这样做的理由是,在一个句子中的每个单词都可能有相关的信息。...它会帮编码器在对特定的单词进行编码时关注输入句子中其它的单词。解码器也有这两层,但解码器中的自注意力层和前馈神经网络层之间还有一个注意力层,该层会帮助解码器关注输入的句子中相关的部分。 ?...在我们对某个特定位置上的单词进行编码时,该得分决定了我们应该对输入句子中其它的部分施以多少关注。 该得分是通过将查询向量分别和我们正在打分的单词的键向量做点乘得到的。

    1K40
    领券