首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

时间序列预测(中)

总第218篇/张俊红 上一篇文章我们介绍的时间预测的方法基本都是通过历史数据直接求平均算出来的的。这一篇讲一些用模型来预测的方法。...而我们这里的自回归顾名思义就是用自己回归自己,也就是x和y都是时间序列自己。...,我们就把它归到μ部分中。...还是拿gdp数据为例,下图就是一阶差分以及一阶差分以后的结果: 下图为一阶差分前后的gdp趋势图,可以看出实际gdp值为持续上升趋势,差分后变成了随机波动: ARIMA的的具体模型如下: 上面公式中的wt...5.最后 当数据是平稳时间序列时可以使用前面的三个模型,当数据是非平稳时间序列时,可以使用最后一个,通过差分的方式将非平稳时间时间序列转化为平稳时间序列。 以上就是常用的对时间序列预测的统计模型。

1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas数据应用:时间序列预测

    引言时间序列预测是数据分析领域中一个非常重要的课题,它涉及到对未来某一时刻的数据进行预测。Pandas 是 Python 中用于数据处理和分析的强大库,提供了许多便捷的函数来处理时间序列数据。...在时间序列中,每个数据点都有一个对应的时间戳,这使得我们可以研究数据随时间的变化趋势。1.2 特征时间序列通常具有以下特征:趋势(Trend) :数据随时间逐渐增加或减少的趋势。...2.2.1 缺失值处理时间序列数据中可能会存在缺失值,可以使用 fillna 方法填充缺失值。...时间序列预测方法3.1 简单线性回归简单线性回归是一种基本的时间序列预测方法,适用于线性趋势明显的数据。...常见问题及解决方法4.1 数据频率不一致如果时间序列数据的频率不一致,可能会导致预测结果不准确。可以使用 resample 方法调整数据频率。

    28310

    时间序列预测中的探索性数据分析

    简介 时间序列预测是数据科学和机器学习领域中极其重要的应用场景,广泛运用于金融、能源、零售等众多行业,对于企业来说具有重大价值。...随着数据获取能力的提升和机器学习模型的不断进化,时间序列预测技术也日趋丰富和成熟。 传统的统计预测方法,如回归模型、ARIMA模型和指数平滑等,一直是该领域的基础。...本文算是定义了一个针对时间序列数据的探索性数据分析模板,全面总结和突出时间序列数据集的关键特征。...这些图表的见解必须纳入预测模型中,同时还可以利用描述性统计和时间序列分解等数学工具来提高分析效果。...滞后分析 在时间序列预测中,滞后期就是序列的过去值。例如,对于日序列,第一个滞后期指的是序列前一天的值,第二个滞后期指的是前一天的值,以此类推。

    23210

    R语言多元Copula GARCH 模型时间序列预测

    p=2623 和宏观经济数据不同,金融市场上多为高频数据,比如股票收益率序列。...直观的来说 ,后者是比前者“波动”更多且随机波动的序列,在一元或多元的情况下,构建Copula函数模型和GARCH模型是最好的选择。...多元GARCH家族中,种类非常多,需要自己多推导理解,选择最优模型。本文使用R软件对3家上市公司近十年的每周收益率为例建立模型。 首先我们可以绘制这三个时间序列。...---- 斯皮尔曼相关性 肯德尔相关性 对相关性建模,考虑DCC模型 对数据进行预测 > fcst = dccforecast(dcc.fit,n.ahead = 200) 我们已经完全掌握了多元...GARCH模型的使用,接下来就可以放手去用R处理时间序列了!

    75020

    R 机器学习预测时间序列模型

    机器学习在时间序列数据上应用 随着疫情的变化,急性传染病数据经常会随时间变化,我们通过对每天传染病的记录,就形成了时间序列数据,周期可以是天,周,月,年。...image.png 但是随着机器学习的广泛应用,在时间序列上,也可以采用机器学习发方法去预测,结果比传统的ARIMA EST更加快速,简洁,准确。...这次将要介绍关于的时间序列预测的Modeltime包,旨在加快模型评估,选择和预测的速度。...如arima_boost(),prophet_boost() 1.数据 我们选取bike_sharing_daily时间序列数据集,其中包括自行车每日的使用数据。...该过程使用“日期”列创建了我要建模的45个新的列。这些列包含了时间序列的详细信息及傅立叶变化的数据。

    94830

    R语言多元Copula GARCH 模型时间序列预测

    p=2623 和宏观经济数据不同,金融市场上多为高频数据,比如股票收益率序列(点击文末“阅读原文”获取完整代码数据)。...多元GARCH家族中,种类非常多,需要自己多推导理解,选择最优模型。本文使用R软件对3家上市公司近十年的每周收益率为例建立模型。 首先我们可以绘制这三个时间序列。...隐含的相关性是指,尽管模型是多元的,但条件协方差矩阵H_t中的元素(即不同时间序列之间的条件协方差)会隐含地决定这些序列之间的相关性。...斯皮尔曼相关性 肯德尔相关性 对相关性建模,考虑DCC模型 对数据进行预测 > fcst = dccforecast(dcc.fit,n.ahead = 200) 我们已经完全掌握了多元GARCH模型的使用...,接下来就可以放手去用R处理时间序列了!

    10010

    预测金融时间序列——Keras 中的 MLP 模型

    作者 | shivani46 编译 | Flin 介绍 本文的目的是展示使用时间序列从数据处理到构建神经网络和验证结果的过程。...金融时间序列预测的数据准备 例如,以像苹果这样的普通公司2005年至今的股价为例。...无论是在分类的情况下,还是在回归的情况下,我们都会以某种时间序列窗口(例如,30 天)作为入口,尝试预测第二天的价格走势(分类),或者变化(回归)的价值。...这个管道可以用于任何时间序列,主要是选择正确的数据预处理,确定网络架构,并评估算法的质量。...价格变化的定量预测结果证明是失败的,对于这项任务,建议使用更严肃的工具和时间序列的统计分析。

    5.4K51

    Prophet在R语言中进行时间序列数据预测

    您将学习如何使用Prophet(在R中)解决一个常见问题:预测公司明年的每日订单。 数据准备与探索 Prophet最拟合每日数据以及至少一年的历史数据。...查询结果集通过管道传递R数据框对象中。...---- 最受欢迎的见解 1.在python中使用lstm和pytorch进行时间序列预测 2.python中利用长短期记忆模型lstm进行时间序列预测分析 3.使用r语言进行时间序列(arima,指数平滑...)分析 4.r语言多元copula-garch-模型时间序列预测 5.r语言copulas和金融时间序列案例 6.使用r语言随机波动模型sv处理时间序列中的随机波动 7.r语言时间序列tar阈值自回归模型...8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类 9.python3用arima模型进行时间序列预测

    1.6K20

    Keras中的多变量时间序列预测-LSTMs

    这在时间预测问题中非常有用,而经典线性方法难以应对多变量预测问题。 在本教程中,您将了解如何在Keras深度学习库中,为多变量时间序列预测开发LSTM模型。...学习该教程后,您将收获: 如何将原始数据集转换为可用于时间序列预测的数据集; 如何准备数据,并使LSTM模型适用于多变量时间序列预测问题; 如何做预测,并将预测的结果重新调整为原始数据单位。...它能较长时间悬浮于空气中,其在空气中含量浓度越高,就代表空气污染越严重) DEWP:露点(又称露点温度(Dew point temperature),在气象学中是指在固定气压之下,空气中所含的气态水达到饱和而凝结成液态水所需要降至的温度...) TEMP:温度 PRES:大气压力 cbwd:组合风向 lws:累计风速 ls:累计小时下雪量 lr:累计小时下雨量 该数据记录了北京某段时间每小时的气象情况和污染程度,我们将根据前几个小时的记录预测下个小时的污染程度...比如: 对风向进行独热向量编码操作 通过差分和季节性调整平稳所有series 把前多个小时的输入作为变量预测该时段的情况 考虑到在学习序列预测问题时,LSTM在时间上使用反向传播,最后一点可能是最重要的

    3.2K41

    【时序预测】时间序列分析——时间序列的平稳化

    确定性去趋势 去趋势是为了消除数据中的线性趋势或高阶趋势的过程。...数据分解定理 1938年,数学家Wold对平稳时间序列提出著名的Wold分解定理 1961年,数学家Crammer将Wold分解定理扩展至任意时间序列。...步骤二中,拟合季节变化St时需要注意观察序列的周期性规律是否明显,选择对应的模型。时间序列用于预测时,也是用Tt和St预测未来的发展变化。 步骤一中,长期趋势的拟合将在后面介绍。...数据平滑法,把时间点t前后的若干观察值作为自变量,时间点t的观察值作为因变量,是利用在较短的时间间隔内的序列的自我拟合。...;最好只做1期预测 Holt线性指数平滑法 每期线性递增或递减的部分也做一个平滑修匀 适用无季节变化、有线性趋势的序列,不考虑季节波动;可向前多期预测 Holt-Winters指数平滑法 加上了季节变动

    11.5K63

    R语言使用ARIMA模型预测股票收益时间序列

    在这篇文章中,我们将介绍流行的ARIMA预测模型,以预测股票的收益,并演示使用R编程的ARIMA建模的逐步过程。 时间序列中的预测模型是什么?...差分(I-for Integrated) - 这涉及对时间序列数据进行差分以消除趋势并将非平稳时间序列转换为平稳时间序列。这由模型中的“d”值表示。...最后,我们交叉检查我们的预测值是否与实际值一致。 使用R编程构建ARIMA模型 现在,让我们按照解释的步骤在R中构建ARIMA模型。有许多软件包可用于时间序列分析和预测。...我们加载相关的R包进行时间序列分析,并从雅虎财经中提取股票数据。...我们将在R中使用For循环语句,在此循环中,我们预测测试数据集中每个数据点的收益值。 在下面给出的代码中,我们首先初始化一个序列,它将存储实际的收益,另一个系列来存储预测的收益。

    2.4K10

    时间序列概率预测的共形预测

    传统的机器学习模型如线性回归、随机森林或梯度提升机等,旨在产生单一的平均估计值,而无法直接给出可能结果的数值范围。如何从点估计扩展到预测区间,正是现代时间序列建模技术所关注的重点。...这种方法可以应用于各种类型的输入数据(如连续变量、分类标签、时间序列等)和输出(如回归、分类、排序等)。...共形预测算法的工作原理如下: 将历史时间序列数据分为训练期、校准期和测试期。 在训练数据上训练模型。 使用训练好的模型对校准数据进行预测。然后绘制预测误差直方图,并定义如图 (A) 所示的容差水平。...将容差区间加减到任何未来点估算中,包括测试数据中的预测,以提供预测区间。...一些人可能已经注意到,预测区间在所有时间段都是相同长度的。在某些情况下,不同的预测间隔可能更有意义。

    1.7K20

    Meal Kit 的时间序列数据预测实践

    在时间序列中,缺失的数据可能会隐藏起来,因为数据可能在时间步长(1周)内不一致,这将在构建模型时可能会导致问题。对每个供应中心标识的数据进行分组。...我们提出的第二类特征是超前和滞后特征,这是时间序列预测的核心。一个显而易见的问题是,我们将数据滞后多少时间步? ?...随机森林在均方误差和R平方方面都给出了可比较的结果,并且可以进一步调整,因此本文主要选择随机森林算法。 在微调最大深度参数过后,我们重新在训练集和验证集上进行训练,最后将模型用于测试集的预测。...得到的均方根误差为0.31;R平方误差为:0.89。 ? 特征重要性图直观显示出滞后特征是下周需求最重要的预测因子。 使用预测模型的价值 这个行业亏损的主要原因是易腐物品的保质期有限。...可以看出,预测模型除了能够对时间序列进行预测以外,还能够对于需求的价格敏感性进行量化。

    86320

    股票预测 lstm(时间序列的预测步骤)

    既然是时间序列预测,我们最关心的是预测值在时间维度上的走势如何,那我们只要最后一列volume和第一列date这两列就好了。...因为lstm时间序列不像别的回归一个x,另一个值y,lstm的x和y全是一组数据产生的,也就是它自己和自己比。...x [[1] [2] [3]] y就是[2 3 4],意思就是用前一个数据预测后一个,这是look_back为1的意思。假如是为8,那前8个数据预测第9个数据。...,黄色是训练数据训练完再进行预测的。...所以博主姑且认为测试集预测值提前一天的效果为最佳效果,这也是为什么上面代码要+1的原因。如果小伙伴们知道如何方便快捷消除lstm时间序列预测的滞后性,记得给博主留言噢。

    2.2K30

    基于 Prophet 的时间序列预测

    前言 时间序列预测一直是预测问题中的难点,人们很难找到一个适用场景丰富的通用模型,这是因为现实中每个预测问题的背景知识,例如数据的产生过程,往往是不同的,即使是同一类问题,影响这些预测值的因素与程度也往往不同...传统的时间序列预测方法,例如ARIMA(autoregressive integrated moving average)模型,在R与Python中都有实现。...Prophet适用于有如下特征的业务问题: a.有至少几个月(最好是一年)的每小时、每天或每周观察的历史数据; b.有多种人类规模级别的较强的季节性趋势:每周的一些天和每年的一些时间; c.有事先知道的以不定期的间隔发生的重要节假日...其中g(t)表示增长函数,用来拟合时间序列中预测值的非周期性变化;s(t)用来表示周期性变化,比如说每周,每年中的季节等;h(t)表示时间序列中那些潜在的具有非固定周期的节假日对预测值造成的影响。...d.预测中需要的其他参数 freq:数据中时间的统计单位(频率),默认为”D”,按天统计,具体可参考这里。 periods:需要预测的未来时间的个数。

    4.5K103

    用于时间序列预测的AutoML

    挑战中的每个数据集都是表格数据,其特征主要有以下三种类型:Id(可以是多个特征或没有特征),时间戳(每个数据集只有一个时间戳),其他特征(数值或分类)以及预测目标。...Id功能的组合标识一个变量(时间序列)。 给定数据集的示例。数据被混淆了,但是有一些时间序列模式 参与者必须提交代码,这些代码将在Docker容器中运行(CPU:4核,16 Gb RAM,无GPU)。...最后一批是时间序列功能:年,月,周几,年几和小时。可以添加更多基于时间的功能,例如一天中的一分钟,一年中的时数等,但是决定不这样做,因此解决方案将是通用的。...对于时间序列,这意味着该模型不会频繁更新,并且需要在验证部分中获取20%到30%的数据(或使用具有相同比例的滚动窗口)。...还用不同的种子测试了装袋和训练以减少预测的差异,但是这些方法花费了很多时间,并且得分的提高不足以包含在最终解决方案中。

    1.9K20
    领券