首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

ggplot2包图形参数(坐标轴、分面、配色)整理

其中ggplot2凭借强大的语法特性和优雅的图形外观,逐渐成为R中数据可视化的主流选择。...4.6.1 移除刻度线、刻度标签和网格线 theme(axis.ticks=element_blank()) # 移除两坐标轴刻度线,无法仅隐藏单个坐标轴的刻度线 theme(axis.text.x...4.6.2 设置刻度线位置 调整参数breaks可以修改刻度线的位置 scale_y_continuous(breaks=c(4, 5, 6, 7,8)) # x轴同理 使用seq()函数可以生成刻度线的位置向量...by="2 month") scale_x_date(breaks=datebreaks) # 使用设定的日期刻度分割点 调整日期刻度标签的格式 library(scales) # 使用scales包中的...date_format()函数来指定格式 scale_x_date(breaks=datebreaks, labels=date_format("%Y %b")) 日期格式应放入一个字符串中传递给date_format

11.3K41

8个流行的Python可视化工具包,你喜欢哪个?

Matplotlib 还可以选择样式(style selection),它模拟了像 ggplot2 和 xkcd 等很流行的美化工具。...如果你想在 R 中用真正的 ggplot(除了依赖关系外,它们的外观、感觉以及语法都是一样的),我在另外一篇文章中对此进行过讨论。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...但它也有优点,而且设置中的所有缺点都有相应的解决方法: 你可以在 Plotly 网站和 Python 环境中编辑图片; 支持交互式图片和商业报表; Plotly 与 Mapbox 合作,可以自定义地图;...最终看来这是值得的,因为图片是交互式的,有令人满意而且便于自定义的美化功能。总而言之,这个包看起来不错,但在文件的创建和渲染部分比较麻烦。 ?

2.6K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    这里有8个流行的Python可视化工具包,你喜欢哪个?

    Matplotlib 还可以选择样式(style selection),它模拟了像 ggplot2 和 xkcd 等很流行的美化工具。...如果你想在 R 中用真正的 ggplot(除了依赖关系外,它们的外观、感觉以及语法都是一样的),我在另外一篇文章中对此进行过讨论。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...但它也有优点,而且设置中的所有缺点都有相应的解决方法: 你可以在 Plotly 网站和 Python 环境中编辑图片; 支持交互式图片和商业报表; Plotly 与 Mapbox 合作,可以自定义地图;...最终看来这是值得的,因为图片是交互式的,有令人满意而且便于自定义的美化功能。总而言之,这个包看起来不错,但在文件的创建和渲染部分比较麻烦。 ?

    2.1K30

    8个流行的Python可视化工具包,你喜欢哪个?

    Matplotlib 还可以选择样式(style selection),它模拟了像 ggplot2 和 xkcd 等很流行的美化工具。...如果你想在 R 中用真正的 ggplot(除了依赖关系外,它们的外观、感觉以及语法都是一样的),我在另外一篇文章中对此进行过讨论。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...但它也有优点,而且设置中的所有缺点都有相应的解决方法: 你可以在 Plotly 网站和 Python 环境中编辑图片; 支持交互式图片和商业报表; Plotly 与 Mapbox 合作,可以自定义地图;...最终看来这是值得的,因为图片是交互式的,有令人满意而且便于自定义的美化功能。总而言之,这个包看起来不错,但在文件的创建和渲染部分比较麻烦。 ?

    2.2K20

    8个好看又实用 Python可视化工具包,再也不怕做不出图表了!

    Matplotlib 还可以选择样式(style selection),它模拟了像 ggplot2 和 xkcd 等很流行的美化工具。...如果你想在 R 中用真正的 ggplot(除了依赖关系外,它们的外观、感觉以及语法都是一样的),我在另外一篇文章中对此进行过讨论。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...但它也有优点,而且设置中的所有缺点都有相应的解决方法: 你可以在 Plotly 网站和 Python 环境中编辑图片; 支持交互式图片和商业报表; Plotly 与 Mapbox 合作,可以自定义地图;...最终看来这是值得的,因为图片是交互式的,有令人满意而且便于自定义的美化功能。总而言之,这个包看起来不错,但在文件的创建和渲染部分比较麻烦。 ?

    4.8K00

    这里有 8 个流行的 Python 可视化工具包,你喜欢哪个?

    Matplotlib 还可以选择样式(style selection),它模拟了像 ggplot2 和 xkcd 等很流行的美化工具。...如果你想在 R 中用真正的 ggplot(除了依赖关系外,它们的外观、感觉以及语法都是一样的),我在另外一篇文章中对此进行过讨论。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...但它也有优点,而且设置中的所有缺点都有相应的解决方法: 你可以在 Plotly 网站和 Python 环境中编辑图片; 支持交互式图片和商业报表; Plotly 与 Mapbox 合作,可以自定义地图;...最终看来这是值得的,因为图片是交互式的,有令人满意而且便于自定义的美化功能。总而言之,这个包看起来不错,但在文件的创建和渲染部分比较麻烦。 ?

    1.7K40

    这里有8个流行的Python可视化工具包,你喜欢哪个?

    Matplotlib 还可以选择样式(style selection),它模拟了像 ggplot2 和 xkcd 等很流行的美化工具。...如果你想在 R 中用真正的 ggplot(除了依赖关系外,它们的外观、感觉以及语法都是一样的),我在另外一篇文章中对此进行过讨论。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...但它也有优点,而且设置中的所有缺点都有相应的解决方法: 你可以在 Plotly 网站和 Python 环境中编辑图片; 支持交互式图片和商业报表; Plotly 与 Mapbox 合作,可以自定义地图;...最终看来这是值得的,因为图片是交互式的,有令人满意而且便于自定义的美化功能。总而言之,这个包看起来不错,但在文件的创建和渲染部分比较麻烦。 ?

    2.2K30

    (数据科学学习手札43)Plotly基础内容介绍

    ,用于导入plotly中所有图形对象,在导入相应的图形对象之后,便可以根据需要呈现的数据和自定义的图形规格参数来定义一个graph对象,再输入到plotly.offline.iplot()中进行最终的呈现...2.4 定义Layout   plotly中图像的图层元素与底层的背景、坐标轴等是独立开来的,在我们通过前面介绍的内容,定义好绘制图像需要的对象之后,可以直接绘制,但如果想要在背景图层上有更多自定义化的内容...linear'表示线性的数值型,'array'表示由自定义的数组来表示(用数组来自定义刻度标签时必须选择此项)     tickvals:list、numpy array或pandas中的series,...    gridcolor:str型,十六进制色彩,控制网格线的颜色     gridwidth:int型,控制网格线的像素宽度     zeroline:bool型,控制是否在0值处绘制0刻度线     ...:int型,控制图像的像素高度,默认为450   margin:字典型输入,控制图像边界的宽度,其主要键如下:     l:int型,控制图像距离左边界的留白区域像素宽度,默认为80     r:int

    3.6K40

    高级可视化神器plotly的4个使用技巧

    公众号:尤而小屋编辑:Peter作者:Peter大家好,我是Peter~最近用plolty绘制了很多的动态可视化图形,有一定自定义的图形设置技巧,供大家参考学习。...图像标题自定义坐标轴刻度小数变百分比改变坐标轴间距翻转坐标轴刻度1 什么是PlotlyPlotly是一个用于创建交互式图表的Python库,它支持多种图表类型,如折线图、散点图、饼图、热力图等。...Plotly的特点如下:高度可定制:用户可以根据需要调整图表的各种属性,如颜色、字体、轴标签等,以创建符合需求的可视化效果。...多语言支持:除了Python,Plotly还支持R、JavaScript、MATLAB等多种编程语言,方便不同背景的用户使用。...="y") fig.update_layout( title= f'plotly绘图技巧1自定义标题', # 表示换行 xaxis_title='序号', # x-y

    55110

    Python可视化神器——Plotly详细教程

    绘图语法规则 2.2 graph对象 plotly中的graph_objs是plotly下的子模块,用于导入plotly中所有图形对象,在导入相应的图形对象之后,便可以根据需要呈现的数据和自定义的图形规格参数来定义一个...绘图语法规则 2.4 定义Layout plotly中图像的图层元素与底层的背景、坐标轴等是独立开来的,在我们通过前面介绍的内容,定义好绘制图像需要的对象之后,可以直接绘制,但如果想要在背景图层上有更多自定义化的内容...tickmode:str型,设置坐标轴刻度的格式,'auto'表示自动根据输入的数据来决定,'linear'表示线性的数值型,'array'表示由自定义的数组来表示(用数组来自定义刻度标签时必须选择此项...)     tickvals:list、numpy array或pandas中的series,作为坐标轴刻度标签的替代(tickmode此时必须被设置为'array')     ticks:str型,控制刻度标签的书写位置...型,控制网格线的像素宽度     zeroline:bool型,控制是否在0值处绘制0刻度线     side:str型,控制x(y)轴放置于作图区域的位置,'top'、'bottom'控制横轴放置于顶部亦或是底部

    31K63

    8个流行的Python可视化工具包

    Matplotlib 还可以选择样式(style selection),它模拟了像 ggplot2 和 xkcd 等很流行的美化工具。...如果你想在 R 中用真正的 ggplot(除了依赖关系外,它们的外观、感觉以及语法都是一样的),我在另外一篇文章中对此进行过讨论。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...但它也有优点,而且设置中的所有缺点都有相应的解决方法: 你可以在 Plotly 网站和 Python 环境中编辑图片; 支持交互式图片和商业报表; Plotly 与 Mapbox 合作,可以自定义地图;...最终看来这是值得的,因为图片是交互式的,有令人满意而且便于自定义的美化功能。总而言之,这个包看起来不错,但在文件的创建和渲染部分比较麻烦。

    62320

    推荐:这才是你寻寻觅觅想要的 Python 可视化神器

    受 Seaborn 和 ggplot2 的启发,它专门设计为具有简洁,一致且易于学习的 API :只需一次导入,你就可以在一个函数调用中创建丰富的交互式绘图,包括分面绘图(faceting)、地图、动画和趋势线...在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...我们可以提供更漂亮的“标签” (labels),可以在整个图表、图例、标题轴和悬停(hovers)中应用。我们还可以手动设置边界,以便动画在整个过程中看起来更棒: ?...Plotly Express 甚至可以帮助你在悬停框中添加线条公式和R²值! 它使用 statsmodels 进行普通最小二乘(OLS)回归或局部加权散点图平滑(LOWESS)。 ?...这是交互与探索的范畴。 Plotly.py 已经发展成为一个非常强大的可视化交互工具:它可以让你控制图形的几乎每个方面,从图例的位置到刻度的长度。

    5K10

    强烈推荐一款Python可视化神器!

    受 Seaborn 和 ggplot2 的启发,它专门设计为具有简洁,一致且易于学习的 API :只需一次导入,您就可以在一个函数调用中创建丰富的交互式绘图,包括分面绘图(faceting)、地图、动画和趋势线...在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...我们可以提供更漂亮的“标签” (labels),可以在整个图表、图例、标题轴和悬停(hovers)中应用。 我们还可以手动设置边界,以便动画在整个过程中看起来更棒: ?...Plotly Express 甚至可以帮助你在悬停框中添加线条公式和R²值! 它使用 statsmodels 进行普通最小二乘(OLS)回归或局部加权散点图平滑(LOWESS)。 ?...这是交互与探索的范畴。 Plotly.py 已经发展成为一个非常强大的可视化交互工具:它可以让你控制图形的几乎每个方面,从图例的位置到刻度的长度。

    4.4K30

    这才是你寻寻觅觅想要的 Python 可视化神器

    受 Seaborn 和 ggplot2 的启发,它专门设计为具有简洁,一致且易于学习的 API :只需一次导入,您就可以在一个函数调用中创建丰富的交互式绘图,包括分面绘图(faceting)、地图、动画和趋势线...在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...我们可以提供更漂亮的“标签” (labels),可以在整个图表、图例、标题轴和悬停(hovers)中应用。 我们还可以手动设置边界,以便动画在整个过程中看起来更棒: ?...Plotly Express 甚至可以帮助你在悬停框中添加线条公式和R²值! 它使用 statsmodels 进行普通最小二乘(OLS)回归或局部加权散点图平滑(LOWESS)。...这是交互与探索的范畴。 Plotly.py 已经发展成为一个非常强大的可视化交互工具:它可以让你控制图形的几乎每个方面,从图例的位置到刻度的长度。

    3.7K20

    这才是你寻寻觅觅想要的 Python 可视化神器!

    受 Seaborn 和 ggplot2 的启发,它专门设计为具有简洁,一致且易于学习的 API :只需一次导入,您就可以在一个函数调用中创建丰富的交互式绘图,包括分面绘图(faceting)、地图、动画和趋势线...在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...我们可以提供更漂亮的“标签” (labels),可以在整个图表、图例、标题轴和悬停(hovers)中应用。 我们还可以手动设置边界,以便动画在整个过程中看起来更棒: ?...Plotly Express 甚至可以帮助你在悬停框中添加线条公式和R²值! 它使用 statsmodels 进行普通最小二乘(OLS)回归或局部加权散点图平滑(LOWESS)。 ?...这是交互与探索的范畴。 Plotly.py 已经发展成为一个非常强大的可视化交互工具:它可以让你控制图形的几乎每个方面,从图例的位置到刻度的长度。

    4.2K21

    Plotly中绘制三种经典的股票交易图表(含视频讲解)

    Plotly中绘制三种经典的 股票交易图表(含视频讲解) 大家好,我是 Lemon 。 背景 股票价格曲线,带可调节的时间条的图怎么绘制?...默认的面积曲线图 在 Plotly 中,可以使用 plotly express 的 area 图来绘制面积曲线图。...每个烛台符号沿着 X 轴上的时间刻度绘制,显示随着时间推移的交易活动。 蜡烛图的示意图如下: ? 默认的蜡烛图 在 Plotly 中,可以使用 candlestick 图来绘制蜡烛图。...默认的OHLC图 在 Plotly 中,可以使用 ohlc 图来绘制蜡烛图。...上面这张大图里看不出美国线的显示效果,我们可以选择今年以来的图来查看下: ? 本文完整的代码,请在公众号后台回复 Plotly 获取。

    3K20

    plotly-express-1-入门介绍

    主题 主题允许用户控制图形范围的设置,包含边距、字体、背景颜色、刻度定位等。...根据列中不同的(N个)值,在水平方向上显示N个子图,并在子图上方,水平方向上,进行文本标注; error_x:指定列名。显示误差线,列中的值用于调整 X 轴误差线的大小。...列中的值用于在负方向调整 X 轴误差线的大小,如果参数error_x==None,则直接忽略该参数; error_y:指定列名。显示误差线,列中的值用于调整 Y 轴误差线的大小。...列中的值用于在负方向调整 Y 轴误差线的大小,如果参数error_y==None,则直接忽略该参数; animation_frame:指定列名。...分配符号的顺序:按按category_orders中设置的顺序循环执行; symbol_map:带字符串键和定义plotly.js符号的字符串值的dict,默认值{}。

    11.5K20

    美化Matplotlib的3个小技巧

    只显示了数据集的前100行。 减少刻度数 如果在轴上绘制的数据点数量很多,刻度看起来非常的紧凑,甚至可能重叠。...在处理时间序列数据时,x轴通常包含占用大量空间的日期,所以可以减少轴上的刻度数来提高显示效果。 让我们先做一个不限制x轴刻度数的例子。...例如将产品的价格和销售数量绘制在一起查看价格对销售数量的影响。 我们的DataFrame中的销售数量和价格列显示在同一线图上,只有一个y轴。...可以看到价格和销售数量的取值范围差距很大我们几乎看不到销售的变化,这时可以使用辅助轴来指定另外一条线的取值范围。...轴坐标(日期)都已经对齐了,这对于分析时间序列时非常有用的,例如想对比2个产品或者2个不同的门店在同一时期的销售情况,通过对齐日期可以给出非常好的直观判断。

    1.7K20

    一文爱上可视化神器Plotly_express

    ,包含边距、字体、背景颜色、刻度定位等。...根据列中不同的(N个)值,在水平方向上显示N个子图,并在子图上方,水平方向上,进行文本标注; error_x:指定列名。显示误差线,列中的值用于调整 X 轴误差线的大小。...列中的值用于在负方向调整 X 轴误差线的大小,如果参数error_x==None,则直接忽略该参数; error_y:指定列名。显示误差线,列中的值用于调整 Y 轴误差线的大小。...列中的值用于在负方向调整 Y 轴误差线的大小,如果参数error_y==None,则直接忽略该参数; animation_frame:指定列名。...分配符号的顺序:按按category_orders中设置的顺序循环执行; symbol_map:带字符串键和定义plotly.js符号的字符串值的dict,默认值{}。

    4K10
    领券