我在看过的一些 Nature 文章和 COSMIC 数据库中看到用点图来展示不同癌症类型下 TMB 的分布差异。...在 R 包中,我有看到过 maftools 中可以绘制这样的图,用来表示新的数据队列与 TCGA 数据的比较,这也是应用于 TMB 分析。因为研究问题,我最近也想尝试使用改种图形来展示数据。...下面是一个使用示例,通过构建一个示例数据进行绘图,展示如何传入分组变量和值变量、分组标签位置、排序以及点的透明度等: set.seed(1234) data <- data.frame( yval...源代码 目前该图的实现代码如下,代码通过 https://github.com/ShixiangWang/sigminer/blob/master/R/show_group_distribution.R...使用 ggplot2 实现这个图我遇到了不少难点,在实现的过程中除了深入理解了 ggplot2,我也同时感受到了它的灵活和限制。
前面给大家简单介绍了 ☞【R语言】R中的因子(factor) 今天我们来结合具体的例子给大家讲解一下因子在临床分组中的应用。 我们还是以TCGA数据中的CHOL(胆管癌)这套数据为例。...关于这套临床数据的下载可以参考 ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) 前面我们也给大家介绍过一些处理临床数据的小技巧 ☞【R语言】卡方检验和Fisher精确检验,复现临床paper...*","stage I/II",stage) #转换成因子 stage=factor(stage) stage 可以得到下面这个两分组的因子 方法二、直接使用factor函数 #删除组织病理学分期末尾的...参考资料: ☞【R语言】R中的因子(factor) ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) ☞【R语言】卡方检验和Fisher精确检验,复现临床paper ☞R生成临床信息统计表...☞玩转TCGA临床信息 ☞TCGAbiolinks获取癌症临床信息 ☞肿瘤TNM分期 ☞R替换函数gsub
未分组数据-直方图 数值型数据表现为数字,在整理时通常进行数据分组。分组是根据统计研究的需要,将数据按照某种标准分成不同的组别。直方图是用矩形的宽度和高度来表示频数分布的图形。...-茎叶图 对于未分组的原始数据,我们可以用茎叶图来显示其分布的特征。...茎叶图由“茎”和“叶”两部分构成,其图形是由数字组成的。通过茎叶图,可以看出数据的分布形状及数据的离散状况,比如分布是否对称,数据是否集中,是否有极端值等。 ... 水生株:100 100 100 200 200 200 200 400 400 用茎叶图初步考察标准株的分布。...,但是不同类型的统计图是不能混用的,必须遵守一定的原则和要求,所以我们在作图前要搞清楚数据类型、所适用的统计图,然后再运用相应的SAS程序作图。
因子:是目标变量的分组,本例中,就是针对充值用户的充值金额进行分组,比如活跃和流失两组。 标注个案:对于异常值进行标注,识别异常值。...我们默认选择按因子水平分组,这标志着因变量的箱图将按照因子进行多个显示,此时就会有多个箱图,这取决于你分组的个数决定,当然不分组,就只会显示一个箱图,无,则就是不显示箱图。...上图为茎叶图 Frequency表示数据的频数,stern表示茎,Leaf表示叶,两者表示数据的整数部分和小数部分,Stern width表示宽度。...怎么看这个茎叶图? 茎叶图其实是一种很形象的图示,下面告诉诸位怎么看茎叶图。简单的一句话解释就是:多少频数就代表多少(叶子+茎)。下面举一个例子来看。...以上结合了一些教材把探索性分析的基本操作讲述了一遍,作为探索性分析这只是我们 作为更深入分析的一个前奏过程,但是这里却不能忽略其价值,比如怎么看茎叶图,箱线图,正态分布检验等等,在网游行业的应用其实也有很多
数据分组,根据数据分析对象的特征,按照一定的数值指标,把数据分析对象划分为不同的区间部分来研究,以揭示内在的联系和规律性; 在R中,我们常用ifelse函数来进行数据的分组,跟excel中的if函数是同一种用法..."(20,40]" "(0,20]" "(60,80]" "(80,100]" [15] "(0,20]" > newData <- data.frame(data, level) 数据分组后的结果
最近有朋友问R中绘制冲积图的代码,其本质仍然是条形图只是添加了样本间的连线;案例要求按列计算每个样本的相对丰度跟往常有所不同。...加载R包 library(tidyverse) library(ggsci) library(magrittr) library(reshape) library(RColorBrewer) library...df_new % mutate_all(~ . / sum(.)) %>% rownames_to_column(var="Genus") 整合数据 # 将分组文件与丰度表进行整合...,read_tsv("group.xls"),by=c("name"="sample")) 绘制冲积图 ggplot(plot, aes(name, value, alluvium = Genus, stratum...、大小,颜色为黑色 axis.title.y = element_text(margin = margin(r = 10), size = 11, color = "black"), # 设置
欢迎关注R语言数据分析指南 ❝最近有朋友问R中绘制冲积图的代码,其本质仍然是条形图只是添加了样本间的连线;案例要求按列计算每个样本的相对丰度跟往常有所不同。...下面小编就来简单介绍一下代码 ❞ 加载R包 library(tidyverse) library(ggsci) library(magrittr) library(reshape) library(RColorBrewer...df_new % mutate_all(~ . / sum(.)) %>% rownames_to_column(var="Genus") 整合数据 # 将分组文件与丰度表进行整合...,read_tsv("group.xls"),by=c("name"="sample")) 绘制冲积图 ggplot(plot, aes(name, value, alluvium = Genus,...= element_blank() # 设置图例框背景为空白 ) 绘制组间冲积图 plot %>% select(1,3,4) %>% group_by(Genus,group) %>%
❝在R中创建sina图使用geom_sina函数,sina图是一种用于显示单个分类变量的每个观测值的图形。它与箱线图和小提琴图类似,但是它显示了每个单独的数据点,这可以提供关于数据分布的更多信息。...❞ 「sina图的主要优点是它可以清楚地显示每个数据点,而不是简单地显示数据的总体分布。这使得sina图特别适用于小样本大小的数据集,其中每个数据点的值都很重要。」...gas_day_started_on)) 数据可视化 df %>% ggplot(aes(x=mth, y=gas_in_storage_t_wh,group=mth)) + # 使用ggforce包中的...), lab=c("2","4","6","8TWh")), aes(x=x, y=y, label=y),inherit.aes = FALSE)+ # 使用scico包中的...month.abb[1:12]) + scale_y_continuous(breaks=c(seq(0,8,2))) + coord_polar() + # 使用极坐标系 # 使用cowplot包中的
之前有人在公众号留言问文章开头这幅图如何实现,下面的B图是折线图加柱形图,相对比较容易实现,上面的A图稍微有点复杂,我想到的办法是拼图,图A可以看成三个热图,然后加一个堆积柱形图,最后将四个图组合到一起...最初的想法是左侧的颜色条用堆积柱形图来实现,又看了一遍Y叔公众号关于aplot这个包的推文,发现他是用geom_tile()函数实现的,仔细想想还是geom_tile()函数实现起来比较方便。...首先解决昨天的遗留问题:ggplot2画图添加文字内容的时候如何添加下划线 非常感谢下面这位的留言 文本添加下划线的小例子 df<-data.frame(A=1:10, B...首先是准备热图的数据 如何画这个热图昨天的推文已经介绍过了,点击下方蓝色字可以直达昨天的推文 R语言ggplot2画带有空白格的热图简单小例子 接下来是准备分组颜色条的数据 下面是画这个颜色条...", legend.title = element_blank())+ scale_fill_manual(values = c("green","blue","red")) 将分组颜色条和热图拼接到一起
加载R包 library(tidyverse) library(ggtext) 导入数据 df <- readr::read_csv('data.csv') 构建标签数据 labs Season 3")) 数据可视化 ggplot(df, aes(x = Episode_order)) + # 为y轴的值添加文本注释...为间隔添加水平线 geom_hline(yintercept = seq(0, 50, by = 10), colour = "grey70", linewidth = 0.3) + # 添加柱状图,...geom_col(aes(y = F_count_total, fill = as.factor(Season)), alpha = 0.8, show.legend = FALSE) + # 添加柱状图,...表示RK的计数 geom_col(aes(y = F_count_RK, fill = as.factor(Season)), show.legend = FALSE) + # 添加富文本
在R中分别用d,p,q,r表示这4个项目,后面接分布的英文名称或缩写。 ? 5.2集中趋势的分析 5.2.1集中趋势的测度 描述统计分布集中趋势的指标主要是平均数、中位数、众数,也称为“平均指标”。...(cars$speed) >q[4]-q[2] [1]7 R中的方差函数和标准差函数分别是var()和sd()R还有一个比较特殊的函数,即离差mad(),它用于计算中位数绝对偏差,具有渐近正态的一致性。...5.4数据的分布分析 5.4.1分布情况的测度 (1)偏度 (2)峰度 5.4.2R语言实现 在程序包timeDate中(或直接加载fBasics程序包),有直接计算偏度和峰度系数的函数,为skewness...5.5.3茎叶图 R中用函数stem()绘制茎叶图 stem(x,scale=1,width=80,atom=1e-08) 其中,x是数据向量,scale控制茎叶图的长度,width控制绘图的宽度,atom...5.5.5经验分布图 在R中函数ecdf()给出样本的经验分布,通过plot()绘制 ecdf(x) plot (x,…,ylab="Fn (x)”,verticals=FALSE,col.01line
带状图 带状图(点图)是用来将定量变量中的数值进行简单展示的图形。...若有需要,用户可以自定义柱子之间的间隔,breaks=c(3,4,6,8,9,10)。 C. 茎叶图 茎叶图可巧妙地将变量中的实际数字用类似于直方图的形式展示出来。...568 4 | 0255667999 5 | 12345555666678889 6 | 0112789 7 | 01125567 8 | 5 9 | 3667 #Tips:茎叶图是一个典型的结构图...每个数据点都有一个茎和一个叶。图中左侧的一列数字为茎,右侧向右平行延伸出来的数字是叶。 D. 箱线图 箱线图依赖于向量中所有数据的5个概括性数值。首先是最容易理解的两个数,最大值和最小值。...时序图本质上是双变量图形:时间序列和时间,但是研究时无需关注时间变量的变化,而是将重点放在时间序列变量上。 时序图是将变量值及其相应的时间作为点在直角坐标系中绘制。
小提琴很多,但是好看配色又高端的可不多,今天来学习一篇2022年6月发表在 nature communicattions 杂志中的小提琴图,文献为《A highly conserved core bacterial...通过16S rRNA扩增子测序(V5-V7区域)对团聚土(BS)、根际土(RS)、根内圈(RE)、木质部汁液(VE)、茎内圈(SE)、叶内圈(LE)和叶表面(P)中的细菌群落进行分析。...,这里小提琴图的x轴指的是不同的土壤取样中的微生物: Bulk Soil (BS): 土壤整体样本,指的是未受植物根系直接影响的土壤。...Xylem Sap (VE): 木质部汁液,指的是在植物木质部中运输的液体,含有水分和溶解的矿物质。 Stem Endosphere (SE): 茎内圈,指的是植物茎内部的微生物群落。...: 取出两个表格中的样本分组以及香农指数信息 # 列名变成首字母大写 colnames(alpha) = capitalize(colnames(alpha)) # 取出 样本分组信息列 Compartments
通过这篇文章,我们将了解基础知识,数学,Python和R实现,朴素贝叶斯算法的应用和变化。与此同时,我们还将看到算法的一些优点和缺点。...目录 1.朴素贝叶斯的基础 2.朴素贝叶斯的数学知识 3.朴素贝叶斯的变形 4. Python和R实现 5.朴素贝叶斯的优点和缺点 6.朴素贝叶斯的应用 什么是朴素贝叶斯算法?...在我们的例子中,香蕉类的概率最大,因此通过朴素贝叶斯算法,我们得到长的、甜的和黄的水果是一个香蕉。 简而言之,我们说一个新元素将属于将具有上述条件概率最大的类。...用Python和R实现朴素贝叶斯算法 让我们看看我们如何使用R和Python中的朴素贝叶斯算法构建基本模型。 R代码 要开始训练R中的朴素贝叶斯分类器,我们需要加载e1071包。...1 library(e1071) R中用于实现朴素贝叶斯的预定义函数称为 naiveBayes ()。
多分组的PCA图和top基因热图在转录组和蛋白组的差异分析中,我们常常在质控阶段需要做一下样本的PCA图和标准差top 基因的表达,来评价组内差异和组间差异。...以前主要做的二分组的比较,要想把多个分组的信息放在一张PCA图或者热图上,只需修改下Group值就行。...= F)#不以因子变量读取options(scipen = 20)#不以科学计数法显示load("step1_input.Rdata")exp 图-...# 2.top 1000 sd 热图---- g = names(tail(sort(apply(exp,1,sd)),200)) #day7-apply的思考题n = exp[g,]library(pheatmap...:匹配最后一个点号之前的所有内容。替换为空,保留最后一个点号后的内容。sub("\\d+$", "", ...)\\d+$:匹配末尾的所有数字。替换为空,去除末尾的数字。P1P2
韦恩图(venn)又称文氏图,是科研文章中最常见的图,可以用来表示多个数据集之间的关系。当然也可以进行集合运算。一般用于展示2-5个集合之间的交并集关系。...=========华丽的分割线============ 对于掌控性要求比较高的同学,可以试着自己写R代码来绘制韦恩图。...今天我们就来重现下面这篇学术论文里面的韦恩图 Fig3为韦恩图 下面我们用R里面的VennDiagram包来重现这个图 我们这里就不用原文作者的数据了,而是随机产生了4个gene list,这四个...fill = rainbow(setnum), #控制圆圈中的数字 cex = 0.3, #字体大小 #fontface = "bold", #粗体 #fontfamily...R的UpSetR包来画Upset plot,如下
写在前面:之前我对于groupby一直都小看了,而且感觉理解得不彻底,虽然在另外一篇文章中也提到groupby的用法,但是这篇文章想着重地分析一下,并能从自己的角度分析一下groupby这个好东西~...OUTLINE 根据表本身的某一列或多列内容进行分组聚合 通过字典或者Series进行分组 根据表本身的某一列或多列内容进行分组聚合 这个是groupby的最常见操作,根据某一列的内容分为不同的维度进行拆解...one) (('b', 'two'), data1 data2 key1 key2 3 -1.125619 -0.836119 b two) 通过字典或者Series进行分组...(mapping,axis=1).mean() solution2:通过Series分组 mapping2 = pd.Series(mapping) # mapping2 橘子 水果 眼影...,在groupby之后所使用的聚合函数都是对每个group的操作,聚合函数操作完之后,再将其合并到一个DataFrame中,每一个group最后都变成了一列(或者一行)。
面积图是一种基于折线图的图形,可以通过图中的面积来表示数据的大小情况,比如下面两种都是面积图: ? ?...wiki 下面是堆积面积图 (stacked area plot) 的在R中的简单实现,主要是用geom_area画出面积: set.seed(1492) Sector <- rep(c("S01","...gis.stackexchange.com/questions/163143/why-is-my-stacked-area-graph-in-ggplot2-returned-as-stacked-lines http://r-statistics.co.../Top50-Ggplot2-Visualizations-MasterList-R-Code.html http://t-redactyl.io/blog/2015/12/creating-plots-in-r-using-ggplot2
可是,过多气泡会使图表难以阅读,但我们可以在图表中加入交互性功能来解决这个问题(点击或把鼠标悬停在气泡上以显示隐藏信息),也可选择重组或筛选分组类别。...每当出现数值时,在相应的列或行中添加记数符号。 完成收集所有数据后,把所有标记加起来并把总数写在下一列或下一行中,最终结果类似于直方图。 推荐的制作工具有:纸和笔。...57、茎叶图 茎叶图 (Stem & Leaf Plots) 又称为「枝叶图」,是一种按位数 (place value)组织数据的方法,可用来显示数据分布。...不变的位数由小至大、由上至下显示在中间的「茎」(通常是以十为单位),每个位数之内的数据则会成为「叶」并横向延伸。 除了向读者快速提供数据分布信息之外,茎叶图也可用于突出异常值和查找模式。...如果您有两个数据集,则可使用背对背或双重茎叶图来比较两者。 推荐的制作工具有:CalculatorSoup、Easycalculation.com、Protovis。
领取专属 10元无门槛券
手把手带您无忧上云