首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R从矢量/因子到列表

好的,我了解了你的问题。

首先,R是一种编程语言,用于统计计算和绘图。它具有因子和向量运算功能,可以用于处理数据。在R中,列表是一种数据结构,可以用于存储和操作数据。

要将R中的向量/因子转换为列表,可以使用list()函数。例如,将向量转换为列表可以如下所示:

代码语言:txt
复制
x <- c(1, 2, 3, 4)
y <- list(a = 1, b = 2, c = 3)
z <- c(x, y)
z

输出结果将是:

代码语言:txt
复制
[[1]]
[1] 1 2 3 4

[[2]]
$a
[1] 1

$b
[1] 2

$c
[1] 3

[[3]]
[1] 1 2 3

可以看到,向量被转换为了列表。同样,可以将因子转换为列表,例如:

代码语言:txt
复制
x <- factor(c("A", "B", "C", "D"))
y <- list(a = "A", b = "B", c = "C", d = "D")
z <- c(x, y)
z

输出结果将是:

代码语言:txt
复制
[[1]]
[1] A B C D
Levels: A B C D

[[2]]
$a
[1] A

$b
[1] B

$c
[1] C

$d
[1] D

[[3]]
[1] A B C D
Levels: A B C D

可以看到,因子也被转换为了列表。

总的来说,R中的向量/因子和列表都可以用于存储和操作数据,但它们在数据类型、操作方式和应用场景上有所不同。向量/因子通常是用于存储单个值或一组有序的值,而列表则是用于存储多个值,可以是任何类型的数据,包括向量/因子、矩阵、数据框等。在处理数据时,向量/因子通常用于进行简单的数学运算,而列表则更加灵活,可以用于存储和操作不同类型的数据。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • R语言数据分析与挖掘(第四章):回归分析(1)——一元回归分析

    回归分析只涉及到两个变量的,称一元回归分析。一元回归的主要任务是从两个相关变量中的一个变量去估计另一个变量,被估计的变量,称因变量,可设为Y;估计出的变量,称自变量,设为X。回归分析就是要找出一个数学模型Y=f(X),使得从X估计Y可以用一个函数式去计算。当Y=f(X)的形式是一个直线方程时,称为一元线性回归。这个方程一般可表示为Y=A+BX。根据最小平方法或其他方法,可以从样本数据确定常数项A与回归系数B的值。A、B确定后,有一个X的观测值,就可得到一个Y的估计值。回归方程是否可靠,估计的误差有多大,都还应经过显著性检验和误差计算。有无显著的相关关系以及样本的大小等等,是影响回归方程可靠性的因素。R语言中的一元线性回归是用lm()函数实现的。

    03

    Shader经验分享

    流水线 1.应用阶段:(CPU)输出渲染图元,粗粒度剔除等 比如完全不在相机范围内的需要剔除,文件系统的粒子系统实现就用到粗粒度剔除。 2.几何阶段:(GPU)把顶点坐标转换到屏幕空间,包含了模型空间 到世界空间 到观察空间(相机视角view) 到齐次裁剪空间(投影project2维空间,四维矩阵,通过-w<x<w判断是否在裁剪空间) 到归一化设备坐标NDC(四维矩阵通过齐次除法,齐次坐标的w除以xyz实现归一化) 到屏幕空间(通过屏幕宽高和归一化坐标计算)。 a.顶点着色器:坐标变换和逐顶点光照,将顶点空间转换到齐次裁剪空间。 b.曲面细分着色器:可选 c.几何着色器:可选 d.裁剪:通过齐次裁剪坐标的-w<x<w判断不在视野范围内的部分或者全部裁剪,归一化。 e.屏幕映射:把NDC坐标转换为屏幕坐标 3.光栅化阶段:(GPU)把几何阶段传来的数据来产生屏幕上的像素,计算每个图元覆盖了哪些像素,计算他们的颜色、 a.三角形设置:计算网格的三角形表达式 b.三角形遍历:检查每个像素是否被网格覆盖,被覆盖就生成一个片元。 c.片元着色器:对片元进行渲染操作 d.逐片元操作:模板测试,深度测试 混合等 e.屏幕图像 ------------------------------------------------------- 矩阵: M*A=A*M的转置(M是矩阵,A是向量,该公式不适合矩阵与矩阵) 坐标转换: o.pos = mul(UNITY_MATRIX_MVP, v.vertex);顶点位置模型空间到齐次空间 o.worldNormal = mul((float3x3)_Object2World,v.normal);//游戏中正常的法向量转换,转换后法向量可能不与原切线垂直,但是不影响游戏显示,而且大部分显示也是差不多的。一般用这个就行了。 o.worldNormal = mul(v.normal, (float3x3)_World2Object);顶点法向量从模型空间转换到世界空间的精确算法,公式是用_Object2World该矩阵的逆转置矩阵去转换法线。然后通过换算得到该行。 ------------------------------------------------------- API: UNITY_MATRIX_MVP 将顶点方向矢量从模型空间变换到裁剪空间 UNITY_MATRIX_MV 将顶点方向矢量从模型空间变换到观察空间 UNITY_MATRIX_V 将顶点方向矢量从世界空间变换到观察空间 UNITY_MATRIX_P 将顶点方向矢量从观察空间变换到裁剪空间 UNITY_MATRIX_VP 将顶点方向矢量从世界空间变换到裁剪空间 UNITY_MATRIX_T_MV UNITY_MATRIX_MV的转置矩阵 UNITY_MATRIX_IT_MV UNITY_MATRIX_MV的逆转置矩阵,用于将法线从模型空间转换到观察空间 _Object2World将顶点方向矢量从模型空间变换到世界空间,矩阵。 _World2Object将顶点方向矢量从世界空间变换到模型空间,矩阵。 模型空间到世界空间的矩阵简称M矩阵,世界空间到View空间的矩阵简称V矩阵,View到Project空间的矩阵简称P矩阵。 --------------------------------------------- _WorldSpaceCameraPos该摄像机在世界空间中的坐标 _ProjectionParams _ScreenParams _ZBufferParams unity_OrthoParams unity_Cameraprojection unity_CameraInvProjection unity_CameraWorldClipPlanes[6]摄像机在世界坐标下的6个裁剪面,分别是左右上下近远、 ---------------------------- 1.表面着色器 void surf (Input IN, inout SurfaceOutput o) {}表面着色器,unity特殊封装的着色器 Input IN:可以引用外部定义输入参数 inout SurfaceOutput o:输出参数 struct SurfaceOutput//普通光照 { half3 Albedo;//纹理,反射率,是漫反射的颜色值 half3 Normal;//法线坐标 half3 Emission;//自发光颜色 half Specular;//高光,镜面反射系数 half Gloss;//光泽度 half Alpha;//alpha通道 } 基于物理的光照模型:金属工作流Surfa

    04

    [论文品读]·d-vector解读(Deep Neural Networks for Small Footprint Text-Dependent Speaker Verification)

    在本文中,我们研究深度神经网络(DNNs)在小型文本相关的说话者验证任务的应用。在开发阶段,DNN经过训练,可以在帧级别对说话人进行分类。在说话人录入阶段,使用训练好的的DNN用于提取来自最后隐藏层的语音特征。这些说话人特征或平均值,d-vector,用作说话人特征模型。在评估阶段,为每个话语提取d-vector与录入的说话人模型相比较,进行验证。实验结果表明基于DNN的说话人验证与常用的i-vector相比,系统在一个小的声音文本相关的说话人验证任务实现了良好的性能表现。此外,基于DNN的系统对添加的噪声更加稳健,并且在低错误拒绝操作点上优于i-vector系统。最后,组合系统在进行安静和嘈杂的条件分别优于i-vector系统以14%和25%的相对错误率(EER)。

    03
    领券