首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R包巨大-为什么采用偏相关会改变相关的符号?

R包巨大是一个用于统计分析和数据可视化的开源软件包,它提供了丰富的函数和工具,可以帮助用户进行数据处理、建模和可视化等工作。

在统计学中,相关性是用来衡量两个变量之间关系的指标。相关性的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示无相关性。而偏相关则是在控制其他变量的影响下,衡量两个变量之间的关系。

偏相关会改变相关的符号的原因是,偏相关是在控制其他变量的影响下计算的,因此它可以消除其他变量对两个变量之间关系的干扰。当存在其他变量的影响时,两个变量之间的直接关系可能被掩盖或扭曲,导致相关性的符号发生改变。

举个例子来说明,假设有三个变量A、B和C,A与B之间存在正相关关系,B与C之间存在负相关关系,但是A与C之间的直接关系未知。如果我们只计算A与C之间的相关性,那么由于未考虑B的影响,可能会得到一个错误的结果。而通过计算A与C之间的偏相关性,可以消除B的影响,更准确地衡量A与C之间的关系。

在实际应用中,偏相关常用于多元统计分析、回归分析和因果推断等领域。通过计算偏相关,可以更准确地分析变量之间的关系,找出主要影响因素,并进行更精确的预测和决策。

腾讯云提供了一系列与数据分析和机器学习相关的产品和服务,例如腾讯云数据仓库(TencentDB)、腾讯云机器学习平台(Tencent AI Lab)等,可以帮助用户进行数据处理、建模和分析工作。具体产品介绍和链接地址可以参考腾讯云官方网站。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 额叶-小脑连接介导认知加工速度

    加工速度是理解认知的重要概念。本研究旨在控制任务特异性,以了解认知加工速度背后的神经机制。对40名被试执行两种方式(听觉和视觉)和两种水平的任务规则(相容和不相容)的注意任务。block设计的功能磁共振成像在任务过程中捕捉到了BOLD信号。参考公开的用于处理速度的任务激活图,定义了13个感兴趣区域。认知速度是从任务反应时间得出的,这产生了六组连接性测量。混合效应LASSO回归显示,有六条重要路径提示了小脑-额叶网络预测认知速度。其中,3例为长程(2例额叶-小脑,1例小脑-额叶),3例短程(额叶-额叶、小脑-小脑和小脑-丘脑)。长距离的连接可能与认知控制有关,而短距离的连接可能与基于规则的刺激-反应过程有关。揭示的神经网络表明,按照任务规则执行操作,自动性与自上而下努力控制注意力相互作用,解释了认知速度。 1 简述 本研究旨在通过使用一系列简单的视觉和听觉通道的刺激-反应(S-R)映射任务来解决可能的任务相关偏差。这个多任务设计目的是解决上面提到的特定于形态和功能偏向的。箭头任务最初是一种视觉S-R兼容性任务,为了更好地控制所需的感觉运动处理时间,回答涉及到关于所看到或听到的内容的简单反应,箭头任务后来被改编成视觉和听觉形式(图1)。为了减少任务转换效应和交叉试验的不确定性,我们采用了分组设计,而不是与事件相关的设计。此外,我们的目标是解决以前的研究中的方法论缺陷,这些研究利用皮尔逊的相关性和心理生理学相互作用(PPI)来建立基于连接性的模型来预测加工速度。在这项研究中,我们建立了六个连通性指标,包括四个基于多变量的指数,用于进行模型比较。通过将控制任务的反应时与控制感觉运动成分的实验任务的反应时进行回归,构造了一个认知速度变量。功能关联性模型的建立基于混合效应套索回归。据我们所知,本文在该领域首次采用跨通道多任务设计,并比较了6种方法对区域间交互作用辅助处理速度的建模结果。 2 方法 2.1 被试 从当地社区招募了40名年龄在18-28岁的健康年轻人参与研究。他们都有高中或以上学历。最终样本包括35名参与者(21.5±2.1岁,14名女性),其中5名参与者被排除在分析之外。 2.2 处理速度任务 箭头任务被用来测量加工速度。它包括一个双选择S-R映射任务,具有相容(COM)、不相容(INC)和简单RT控制条件(NEU)(图1)。在COM中,参与者在出现向上箭头时按下“向上”按钮,在出现向下箭头时按下“向下”按钮(图1)。在INC中,参与者按下“向上”键表示向下箭头,按“向下”键表示向上箭头。实验涉及参与者在观看一条没有箭头的垂直线时按下任何按钮。因为在这些条件下出现的刺激是视觉图像,所以它们被称为COMVIS、INC-VIS和NEU-VIS。相同条件的听觉版本是COM-AUD、INC-AUD和NEU-AUD,向上箭头、向下箭头和垂直线分别被高音、低音和中音代替。

    01

    静息态fMRI+机器学习:慢性下腰痛会引起哪些脑区的改变?

    慢性下腰痛(cLBP)是一种持续至少3个月以上的腰部慢性疼痛综合征。很多局部及系统性疾病均可出现腰痛,但临床上多见的是脊椎退行性病变以及急、慢性损伤所引起的腰痛。据统计,80%的人在其一生中都曾有过腰痛的困扰。近年来,更有患者增多的趋势。这可能与现代社会的生活方式有关,例如运动减少、某种姿势维持时间过长以及缺乏腰部保健知识等。 下腰痛(LBP)是全球致残的主要原因,为社会和个人带来沉重的经济负担。持续的疼痛会使人产生负面情绪、认知与行为障碍等精神身体方面的影响,严重影响患者的生活质量及水平。然而,目前治疗cLBP的方法远不能令人满意,cLBP患者中阿片类药物过量和成瘾的比率显著增加,这突出表明迫切需要更好地了解该疾病的病理生理学,并开发新的治疗方法。 近年来,功能磁共振的出现为cLBP状态下脑部功能/结构的改变提供了准确定位,已成为神经影像学研究的重要工具。而作为低频振荡指标的低频振幅(ALFF)得到了越来越多的关注。尽管仍在研究中,但已有研究表明ALFF与人类的脑血流和任务诱发的激活有关。在常用的静息态功能磁共振(RS-fMRI)指标中,ALFF在测试可靠性和可重复性之间具有最佳的平衡。机器学习在脑科学领域的应用广泛而深入,最简单或者最常用的一个应用方向是分类,如疾病的分类。但是将机器学习技术应用于疼痛的研究很少。近期,来自美国的研究团队在British Journal of Anaesthesia杂志上发表题目为《Identifying brain regions associated with the neuropathology of chronic low back pain: a resting state amplitude of low-frequency fluctuation study》的研究论文,以ALFF作为特征值,应用支持向量机(SVM)分类器,探索最有可能区分cLBP患者和健康人的脑区,并确定对cLBP疼痛强度变化敏感的脑区。

    00

    皮尔森类似度(Pearson Similiarity)计算举例与数学特性和存在问题

    皮尔森相关系数(Pearson correlation coefficient)也叫皮尔森积差相关系数(Pearson product-moment correlation coefficient),是用来反应两个变量相似程度的统计量。或者说可以用来计算两个向量的相似度(在基于向量空间模型的文本分类、用户喜好推荐系统中都有应用)。 皮尔森相关系数计算公式如下: ρX,Y=cov(X,Y)σXσY=E((X−μX)(Y−μY))σXσY=E(XY)−E(X)E(Y)E(X2)−E2(X)√E(Y2)−E2(Y)√ρX,Y=cov(X,Y)σXσY=E((X−μX)(Y−μY))σXσY=E(XY)−E(X)E(Y)E(X2)−E2(X)E(Y2)−E2(Y)\rho_{X,Y}=\frac{cov(X,Y)}{\sigma_{X}\sigma_{Y}}=\frac{E((X-\mu_X)(Y-\mu_Y))}{\sigma_{X}\sigma_{Y}}=\frac{E(XY)-E(X)E(Y)}{\sqrt{E(X^2)-E^2(X)}\sqrt{E(Y^2)-E^2(Y)}} 分子是协方差,分母是两个变量标准差的乘积。显然要求X和Y的标准差都不能为0。

    03

    HBM:冒险倾向调节冲动性对大脑功能连接的影响

    冲动性和感觉寻求被认为是冒险性行为中最重要的人格特质,人格特质和脑功能连接之间联系是否取决于个体的冒险倾向呢?本研究利用DOSPERT-30问卷和机动车模拟驾驶来测量冒险倾向,将被试分为有、无冒险倾向两组,利用EEG测量结果分析在有无冒险倾向两组之间7个主要的脑功能连接网络之间的关系与冲动性和感觉寻求人格之间的联系是否在存在差异。在冒险倾向组中,缺乏预先计划时腹侧注意和边缘网络之间的耦合增强;同时,情感追求增强额顶叶神经网络和默认模式网络(DMNs)之间的耦合。最终,缺少持久性对边缘网络的前颞节点(anteriortemporal nodes)的耦合有积极作用,但是对某些额顶叶神经网络和DMNs之间的额极耦合有消极作用。总之,冒险性倾向对冲动性人格相关的脑功能活动有调节作用,使得脑神经网络处于更倾向即刻、自动、或者不适当的反应的状态。

    00

    你知道R中的赋值符号箭头(<-)和等号(=)的区别吗?

    作为一门高级语言,R语言拥有独特的语法,比如今天说道的赋值符号。在其他语言里,赋值符合通常用一个等号(=)表示,而在R语言里,承担这个任务的可以是箭头(<-)符号,也可以是等号(=)。这就导致许多R语言初学者,分不清R语言中的赋值到底是使用箭头(<-)还是等号(=)?许多早期学习R的童鞋都比较喜欢使用等号(=)进行赋值。毕竟,简简单单的a = 5用起来比较符合大多数现有语言的习惯。出于对某种赋值方式的偏好,甚至出现了等号党和箭头党,但是到底孰好孰坏,显然争不出任何结果,相对来说更重要的是了解这两者的区别。只有我们深刻理解了其相同与不同之后,才能更好的运用他们。

    02

    发育中的大脑结构和功能连接体指纹

    在成熟的大脑中,大脑连接的结构和功能指纹可以用来识别个体的独特性。然而,使某一特定大脑区别于其他大脑的特征是否在出生时就已经存在仍不得而知。本研究利用发育中的人类连接组计划(Human Connectome Project, dHCP)的神经影像数据,对早产儿围产期进行两次扫描,以评估发育中的脑指纹。我们发现,62%的参与者可以通过后来的结构连接组与从较早时间点获得的初始连接矩阵的一致性来识别。相反,同一被试在不同时间点的功能连接体之间的相似性较低。只有10%的参与者在功能连接体中表现出更大的自相似性。这些结果表明,结构连接在生命早期更稳定,可以代表个体的潜在连接组指纹:当新生儿必须快速获得新技能以适应新环境时,一个相对稳定的结构连接组似乎支持功能连接组的变化。

    02

    访谈 | 与吉林大学统计系教授聊聊时间序列分析

    本文由经管之家CDA数据分析师独家整理,转载请注明来源 前不久,经管之家邀请到了吉林大学数据学院概率统计系教授朱复康博士参与了论坛的线上互动问答,与广大坛友就时间序列分析、保险精算等内容进行了交流,小编将问答内容整理如下,以飨读者。 本期嘉宾 朱复康博士,吉林大学数学学院概率统计系教授,研究方向为时间序列分析、保险精算,主要教授时间序列分析、多元统计分析与线性模型、统计软件、概率统计、数理统计、多元统计分析、统计基础等研究生和本科课程,新加坡南洋理工大学访问学者, 美国佐治亚理工学院博士后,现兼任吉林省工业

    010

    Cerebral Cortex:大尺度结构协变网络预测中老年成人的脑年龄

    一、背景   老化是一个复杂而且动态的过程,伴随着不断累积的年龄效应,影响了人类的多个器官。这些器官的衰退引起了多种行为和临床的表现,比如心血管疾病,认知衰退等。虽然这些临床症状在老年时期才会显现,但是相应的变化在老年之前的很多年前就会开始发挥作用。越来越多的研究者开始寻找能够提前预示着老化的一些生物标记物,来防范于未然。   老化的一个显著的变化是大脑组织的改变,这些改变已用MRI研究发现。此前,很多研究已经发现从大脑灰质体积,白质完整性,皮层厚度等很多方面发与于老化有关系。并且,这些正常的衰老变化在神经精神疾病和神经退行性疾病中会发生改变。进而提出了大脑加速化衰老的概念,并且假设这种衰老化的快慢能够用来区分正常人和患者。借助机器学习,研究人员不仅发现人脑的灰质体积和白质完整性能够预测人的生物学年龄,并且发现阿尔兹海默症,轻度认知障碍,精神分裂症等患者存在脑加速衰老的表现。    近年来的研究发现,大脑不同区域之间共同作用形成了不同的大脑子网络。其中,结构协变网络就是其中一种研究大脑大尺度协作关系的研究手段。很多研究指出结构协变网络能够反映跨脑区的遗传发育和同步成熟。在此基础之上,很多研究也发现利用结构协变网络研究神经退行性疾病和神经精神病网络级上异常的可能性。近期,发表在《Cerebral Cortex》杂志上的一篇研究论文结合结构协变网络和机器学习来构建模型预测脑年龄,并且该模型能够检测出相关疾病的脑加速化衰老现象。 二、材料方法 1.被试   研究包含了中老年精神疾病和神经退行性疾病患者,年龄范围在50-90岁。正常对照的总人数是909人,年龄范围在50-89岁,用来构建模型预测脑年龄。 2.数据采集   采集了所有被试的T1加权图像,并且计算了每个被试的灰质体积图。 3.分析流程   图1表示了文章的具体分析流程。首先计算完每个被试的灰质体积图。将所有的被试串联在一起,用ICA的方法划分团块。这里由于ICA需要事先确定主成分个数,所以设定一个区间。在训练集内,用空间回归的方法计算每个网络整合系数(beta系数)。这些网络的整合系数被进一步当成特征来预测大脑的年龄。在确定了最优的成分数之后,训练集得到的ICA的成分图被当作先验模板来计算测试集和临床疾病数据的网络整合系数。然后,将测试集和临床疾病数据的网络整合系数送入训练好的模型进行预测。

    01

    Cerebral Cortex:老年人生活方式与脑功能连接的关系及其与认知能力下降的联系

    本研究探讨了参与不同生活方式活动与大范围脑功能网络连接的关系,以及网络连接是否独立于脑淀粉样蛋白水平而改善认知能力下降。参与者(N = 153,平均年龄= 69岁,包括N = 126淀粉样蛋白成像)在完成静息状态功能磁共振成像、生活方式活动问卷和认知测试后,认知正常。他们每年接受长达5年的认知测试(平均= 3.3年)。线性回归表明,认知活动参与与背侧注意网络内的连接,以及身体活动水平与默认模式、边缘和额顶叶控制网络内的连接以及全局网络内连接之间存在正相关关系。此外,较高的认知和身体活动水平与较高的网络模块化(功能网络专业化的衡量指标)独立相关。这些相关性在很大程度上独立于APOE4基因型、淀粉样蛋白负担、全脑萎缩、血管风险和认知储备水平。此外,背侧注意、默认模式和边缘网络的高连通性,以及更大的全局连通性和模块化与认知能力下降相关,与APOE4基因型和淀粉样蛋白负担无关。这些发现表明,大脑功能连接的变化可能是生活方式活动减少认知能力下降的机制之一。

    02
    领券