前言 如果你还在纠结:学数据科学到底用 python 还是 R 好?现在我的回答是:大可不必。现在两者的变量可以相互调用了。你可以用 R 做数据处理(tidyverse),可视化(ggplot2),用
如果你想进入数据科学领域,你可能立即会想到R和Python。然而,我们并不是要以作为两种选择来考虑他们,相反地,我们更多的是去比较他们。R和Pyhton在他们各自的领域里,都是非常完美的工具。尽管如此,他们往往成为各自敌人而争吵。如果你在谷歌搜索栏里输入“R vs Python”,你会看到非常多的关于他们霸权之争。
陈桦 编译自 KDnuggets 量子位 报道 | 公众号 QbitAI 近期,数据挖掘资讯网站KDnuggets开展了一项调查,问题是“2016年和2017年,在数据分析、数据科学和机器学习工作中,
近期,数据挖掘资讯网站KDnuggets开展了一项调查,问题是“2016年和2017年,在数据分析、数据科学和机器学习工作中,你使用R、Python、两者都用,还是其他工具?” 对954名受访者的调查
强烈建议:正则一律加上r字符(不加可能有问题,加上r肯定没有问题(分组里面不加r会出现问题))
| 全文1765共字,建议阅读时长3分钟 | 近期,数据挖掘资讯网站KDnuggets开展了一项调查,问题是“2016年和2017年,在数据分析、数据科学和机器学习工作中,你使用R、Python、两者都用,还是其他工具?” # 高能预警:下文含多张辣眼睛的配图,请做好防护…… 对954名受访者的调查显示,Python尚未完全“吞噬”R,但2017年Python生态系统已经超越了R,成为数据分析、数据科学和机器学习领域领先的平台,同时也在迅速吸引其他平台的用户。 2016年,Python排名第二(
R(又称R语言)是一款开源的跨平台的数值统计和数值图形化展现工具。通俗点说,R是用来做统计和画图的。R拥有自己的脚本语言和大量的统计、图形库(得益于开源社区),这让她看起来既美又实用。与其他同类软件(如 SPSS)相比,R的特点是纯命令行的,这倒也好,我们更应该把注意力放在数据本身,而非统计工具的UI。
AI科技评论消息,近日,kdnuggets做了一个关于数据科学、机器学习语言使用情况的问卷调查,他们分析了954个回答,得出结论——Python已经打败R语言,成为分析、数据科学和机器学习平台中使用频率最高的语言。有关此次问卷更具体的情况如何?AI科技评论将kdnuggets上发表的总结文编译整理如下: 之前我们在kdnuggets上做了这样一个问卷调查,2016、2017两年,在分析、数据科学和机器学习的工作中,你用R语言,还是Python,或两者都用,或选择其他的语言? 通过分析954个回答,我们得出了
近日,kdnuggets 做了一个关于数据科学、机器学习语言使用情况的问卷调查,他们分析了 954 个回答,得出结论——Python 已经打败 R 语言,成为分析、数据科学和机器学习平台中使用频率最高的语言。有关此次问卷更具体的情况如何?AI研习社将 kdnuggets 上发表的总结文编译整理如下: 之前我们在 kdnuggets 上做了这样一个问卷调查,2016、2017 两年,在分析、数据科学和机器学习的工作中,你用 R 语言,还是 Python,或两者都用,或选择其他的语言? 通过分析 954 个回答
最近,我同时使用R和Python进行了更多的项目。对我而言,使用最佳工具来完成工作变得越来越重要,而不受单一语言的束缚。Python在某些方面做得最好,R在某些方面做得最好,因此,如果我们在需要的时候可以同时使用这两种方法,那么我们就可以发挥出最好的性能。在最近的示例中,我想创建一个Shiny应用程序来生成参数化的Powerpoint文档,这个应用我是用R的tidyverse对我的数据进行编码处理,使用Python编写了Powerpoint编辑代码,因为这在python-pptx包中很容易。
大数据文摘作品,欢迎个人转发朋友圈;其他机构、自媒体转载,务必后台留言,申请授权。 来源|DataCamp 编译|于婷婷 魏子敏 康欣 小小编辑| Ivy 如果你是数据分析领域的新兵,那么你一定很难抉择——在进行数据分析时,到底应该使用哪个语言,R还是Python?在网络上,也经常出现诸如“我想学习机器语言,我应该用哪个编程语言”或者“我想快速解决问题,我应该用R还是Python”等这类问题。尽管两个编程语言目前都是数据分析社区的佼佼者,但是它们仍在为成为数据科学家的首选编程语
对于想从事数据行业的人和数据工作者来说,是学习R还是Python,哪个工具更实用一直被大家争论。MartijnTheuwissen,DataCamp的教育专家详细比较了这两个工具。 Python和R是统计学中两种最流行的的编程语言,R的功能性主要是统计学家在开发时考虑的(R具有强大的可视化功能),而Python因为易于理解的语法被大家所接受。 在这篇文章中,我们将重点介绍R和Python以及它们在数据科学和统计上地位之间的差异。 1 关于R的介绍 RossIhaka和RobertGentleman于1995
导读:Python 或 R,这是一个问题。在数据科学工作中,你可能也经常遇到这个选择困难问题。本文作者Brian Ray基于数十年的Python和R在数据科学领域的使用检验,分享了自己的看法,希望能够帮大家做出更好的选择。
在这篇文章中,我们将重点介绍R和Python以及它们在数据科学和统计上地位之间的差异。
对于想入门数据科学的新手来说,选择学Python还是R语言是一个难题,本文对两种语言进行了比较,希望能帮助你做出选择。
R语言是非常强大的做统计分析和建模方面的开源软件,它有非常丰富的统计软件包,做统计可以说只有你想不到的,没有R办不到的。Python又是当下最流行的编程软件之一,Python也是开源的,包含了非常丰富的第三方库(如机器学习算法),那么如何让Python和R共同工作呢?利用Python中的rpy2包就可以实现这一想法。 如何安装rpy2? 首先需要安装Python的科学计算环境Anaconda和R软件(最好再安装个Rstudio,好用到爆的R软件IDE,安装和管理R包太方便了),安装好Anaconda和R软件
Python 或 R,这是一个问题。在数据科学工作中,你可能也经常遇到这个选择困难问题。本文作者Brian Ray基于数十年的Python和R在数据科学领域的使用检验,分享了自己的看法,希望能够帮大家做出更好的选择。
概述 在真实的数据科学世界里,我们会有两个极端,一个是业务,一个是工程。偏向业务的数据科学被称为数据分析(Data Analysis),也就是A型数据科学。偏向工程的数据科学被称为数据构建(Data Building),也就是B型数据科学。 从工具上来看,按由业务到工程的顺序,这个两条是:EXCEL >> R >> Python >> Scala 在实际工作中,对于小数据集的简单分析来说,使用EXCEL绝对是最佳选择。当我们需要更多复杂的统计分析和数据处理时,我们就需要转移到 Python 和 R 上。在确
Python有一些使用案例,R也是如此。使用它们的场景各不相同。 更常见的是环境以及客户或雇主的需求决定了Python和R之间的选择。许多事情在Python中都比较容易。 但R也在您的开发工具包中占有一席之地。
什么是R语言? R语言,一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。R本来是由来自新西兰奥克兰大学的罗斯·伊哈卡和罗伯特·杰特曼开发(也因此称为R),现在由“R开发核心团队”负责开发。R基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。 R的源代码可自由下载使用,亦有已编译的可执行文件版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和Linux)、Windows和MacO
如果你是数据分析领域的新兵,那么你一定很难抉择——在进行数据分析时,到底应该使用哪个语言,R还是Python?在网络上,也经常出现诸如“我想学习机器语言,我应该用哪个编程语言”或者“我想快速解决问题,我应该用R还是Python”等这类问题。尽管两个编程语言目前都是数据分析社区的佼佼者,但是它们仍在为成为数据科学家的首选编程语言而战斗。
文章目录 概述 应用场景对比 应用Python的场景 应用R的场景 数据流编程对比 参数传递 数据传输与解析 基本数据结构 MapReduce 矩阵操作 数据框操作 数据流编程对比的示例 数据可视化对
Python和R是统计学中两种最流行的的编程语言,R的功能性主要是统计学家在开发时考虑的(R具有强大的可视化功能),而Python因为易于理解的语法被大家所接受。 在这篇文章中,我们将重点介绍R和Python以及它们在数据科学和统计上地位之间的差异。 关于R的介绍 Ross Ihaka和Robert Gentleman于1995年在S语言中创造了 开源语言R,目的是专注于提供更好和更人性化的方式做数据分析、统计和图形模型的语言。 起初R主要是在学术和研究使用,但近来企业界发现R也很不错。这使得中的R成为企
在编程世界里,处理字符串是一项基本而又常见的任务。无论是数据清洗、日志分析,还是文本处理,我们都可能会遇到需要从一大堆文本中提取出我们需要的信息的场景。
「?」表示匹配?前面的字符0次或1次,这里需要注意的是,在代码中打印r2结果出现了2个Python,这是由于?具有去重的功能。
几十年来,研究人员和开发人员一直在争论,对于进行数据科学和数据分析,Python和R语言哪个才是更好的选择?近年来,数据科学在生物技术、金融和社交媒体等多个行业迅速发展。数据科学的重要性不仅得到了业内人士的认可,而且还得到了许多学术机构的认可,目前越来越多的学校都开始设立数据科学学位。
31. R studio/R 工具指南(十四:在Rstudio中使用python和conda)
大数据文摘作品 编译:大茜、钱天培 R还是Python? 真是个千古难题! 如果你主要从事数据分析、统计建模和可视化,R大概是你的不二之选。但如果你还想来搞点深度学习,整个自然语言处理,那你可还真得用Python。 如果你处于交叉领域,很可能就需要两种语言切换。后果是,写个for loop还出bug真的是家常便饭。报警! 面对这种困境的绝不止你一个人!最近的KDnuggets Analytics的软件调查中,Python和R位居数据科学和机器学习软件的前两名。 如果你真的想提高你在数据科学领域的能力,这两种
参见:https://cloud.tencent.com/developer/article/1657000 https://zhuanlan.zhihu.com/p/164507492 https://rstudio.github.io/reticulate/index.html
参考链接: Python中的十进制函数 2(logical_and(),normalize(),quantize(),rotate()…)
导读:关于三种数据科学工具Python、R和SAS,本文从8个角度进行比较分析并在文末提供记分卡,以便你随时调整权重,快速做出选择。
在当今快速发展的技术领域,Python已经成为了许多开发者首选的编程语言之一。其简洁而强大的语法使其在各种领域都有着广泛的应用。本篇博客将引领你深入了解Python中正则表达式与JSON的强大组合,揭示它们如何协同工作,为开发者提供了解析和处理文本数据的高效方式。
R3con1z3r是一个轻量级的Web信息收集工具,具有用python编写的直观功能。它提供了一个强大的环境,可以快速,彻底地进行开源智能(OSINT)基于Web的足迹。
编译:丁一 黄念 丁雪 校对:席雄芬 姚佳灵 程序验证:郭姝妤 序言 在Python中调用R或在R中调用Python,为什么是“和”而不是“或”? 在互联网中,关于“R Python”的文章,排名前十的搜索结果中只有2篇讨论了一起使用R和Python的优点,而不是把这两种语言对立起来看。这是可以理解的:这两种语言从一开始都具有非常显著的优缺点。从历史上看,尽管把两者分割开来是因为教育背景:统计学家们倾向用R,而程序员则选择了Python语言。然而,随着数据科学家的增加,这种区别开始变得模糊
从比较三星、苹果、HTC的智能手机,iOS、Android、Windows的移动操作系统到比较即将选举的选举候选人,或者选择世界杯队长,比较和讨论丰富了我们的生活。如果你喜欢讨论,你所要的就是在一个充满激情的群体中抛出一个相关问题,然后看着它爆炸式地发展!这个过程的美妙之处在于,社区里的每个人都是一个知识渊博的人。
如果你主要从事数据分析、统计建模和可视化,R大概是你的不二之选。但如果你还想来搞点深度学习,整个自然语言处理,那你可还真得用Python。
这篇文章是关于制作 Python Docker 容器镜像的最佳实践。(2022 年 12 月更新) 最佳实践的目的一方面是为了减小镜像体积,提升 DevOps 效率,另一方面是为了提高安全性。希望对各位有所帮助。
预料之内的是,Python 并没有完全「吞噬」R 语言的空间,但这项基于 954 个参与者的投票显示,Python 生态系统在今年已经超越了 R 语言,成为了数据分析、数据科学和机器学习的第一大语言。
R语言可以比作独孤九剑, 函数都是写好的, 包也是写好的, 直接用就可以了, 功能强大. 就像独孤九剑, 学起来不需要任何基础, 学会之后很强大, 破刀式, 破剑式, 破枪式等等, 可以应对很多问题. 但是如果你想在此基础上更上一层楼, 就难于登天了, 因为你没有基础, 向上走一点, 真的是牵一发而动全身, 进入了编程能力的天花板.
导读 Sharp Sight Labs 近日在 r-bloggers 上发表了一篇文章,论述了为什么当今的数据科学工作者应该学习 R 语言的原因。为了给大家提供一个明晰的对比,我们在后面补充了 2016 年初的一篇文章:R vs.Python。 在前一段时间的博客中,我解释了为什么你应该掌握 R 语言(即便它最终可能过时)。我写这篇文章是为了向那些声称掌握 R 语言浪费时间的人致辞。(因为它最终会变得过时)。 但是当我认为 R 语言最终会变得过时时,这似乎引起了恐惧——仿佛 R 语言已经过时了。 我想要消除
关于哪种语言更适合数据科学的问题有一个非常热门的争论:R还是Python。答案是两个。人们经常比较R和Python的特性而感到困惑,但我们需要明白,单靠功能本身并不能定义任何语言的适用性。R和Python都有适合数据科学和分析应用程序的特定功能。在某些情况下,一种语言比另一种更优先,但这并不意味着其他语言是无用的。 数据平台 Kaggle 近日发布了 2017 机器学习及数据科学调查报告,这也是 Kaggle 首次进行全行业调查。调查共收到超过 16000 份回复,受访内容包括最受欢迎的编程语言、不同国
一直以来我们学习、测试python都会提到 Pycharm,不仅好用,还支持使用 R 语言。
关于三种数据科学工具Python、R和SAS,本文从8个角度进行比较分析并在文末提供记分卡,以便你随时调整权重,快速做出选择。
本文章旨在更客观地看待这两门语言。我们会平行使用Python和R分析一个数据集,展示两种语言在实现相同结果时需要使用什么样的代码。这让我们了解每种语言的优缺点,而不是猜想。 我们将会分析一个NBA数据集,包含运动员和他们在2013-2014赛季的表现,可以在这里下载这个数据集。我们展示Python和R的代码,同时做出一些解释和讨论。 读取CSV文件 ---- R nba <- read.csv("nba_2013.csv") Python import pandas nba = pandas.read
作者:黄耀鹏人工智能爱好者,一名数据科学研究者及科普写作者 知乎专栏:https://zhuanlan.zhihu.com/data-science-meditation 作为『十大机器学习算法』之一的K-近邻(K-Nearest Neighbors)算法是思想简单、易于理解的一种分类和回归算法。今天,我们来一起学习KNN算法的基本原理,并用Python实现该算法,最后,通过一个案例阐述其应用价值。 KNN算法的直观理解 (添加一个直观的图) 它基于这样的简单假设:彼此靠近的点更有可能属于同一个类别。用大俗
这里介绍的方法与我们自学习外语的时候使用的方法是有共同之处的,例如我们要学习英语,可以使用以下三个关键的练习帮助我从笨拙地将中文单词翻译成英语,转变为直接用英语思考和回答(英语思维)。
在Python中调用R或在R中调用Python,为什么是“和”而不是“或”? 在互联网中,关于“R Python”的文章,排名前十的搜索结果中只有2篇讨论了一起使用R和Python的优点,而不是把这两种语言对立起来看。这是可以理解的:这两种语言从一开始都具有非常显著的优缺点。从历史上看,尽管把两者分割开来是因为教育背景:统计学家们倾向用R,而程序员则选择了Python语言。然而,随着数据科学家的增加,这种区别开始变得模糊起来: 数据科学家就是这样一种人:软件工程师中最懂统计学,统计学家中最会编程的人。
pFuzz是一款功能强大的Web应用程序防火墙安全检测/绕过工具,可以帮助广大研究人员同时通过多种方式绕过目标Web应用程序防火墙,以测试WAF的安全性。
导读:想知道做数据分析应该使用R还是Python?事实证明,很多好资源可以帮助你了解这两种语言的优缺点。
前几天(上周日),我在分答上回答了一个问题,问题是: Python,R,SPSS,SQL这类软件哪个最适合初学者入门以及进阶学习的顺序(以就业为导向) 语音中我从“职能方向”和“行业方向”聊了一下自己
领取专属 10元无门槛券
手把手带您无忧上云