作者:唐源 摘自:统计之都(微信ID CapStat) 唐源,目前就职于芝加哥一家创业公司,曾参与和创作过多个被广泛使用的 R 和 Python 开源项目,是 ggfortify,lfda,metric-learn...(喜欢爬山和烧烤 ) ggfortify 是一个简单易用的R软件包,它可以仅仅使用一行代码来对许多受欢迎的R软件包结果进行二维可视化,这让统计学家以及数据科学家省去了许多繁琐和重复的过程,不用对结果进行任何处理就能以...来很快地对PCA、聚类以及LFDA的结果进行可视化,然后将简单介绍用 ggfortify 来对时间序列进行快速可视化的方法。...PCA (主成分分析) ggfortify 使 ggplot2 知道怎么诠释PCA对象。...可支持的R包有: zoo::zooreg xts::xts timeSeries::timSeries tseries::irts 一些例子: library(xts) autoplot(as.xts(
与每日和较低频率的收益不同,日内高频数据有某些特殊的特点,使得使用标准的建模方法是无效的。在这篇文章中,我将使用花旗集团2008年1月2日至2008年2月29日期间的1分钟收益率。...考虑的日内时间范围是09:30至16:00,即证券交易所的正式交易时间。与大多数此类关于日内数据建模的研究一样,当天的第一个收益被删除。每日数据从雅虎财经下载。...为了使绝对收益去季节化,文献中提出了几种方法,如Andersen和Bollerslev(1997)的灵活傅里叶方法,以及Bollerslev和Ghysels(1996)的定期GARCH模型。...模型 考虑连续复利收益率 r_{t,i} ,其中 t 表示一天, i 表示计算收益率的定期间隔时间。在这个模型下,条件方差是每日和随机(日内)成分的乘积,因此,收益可以表示为:。 ?...预测 为预测编写代码的最大挑战是处理时间的对齐和匹配问题,特别是未来的时间/日期,因为该模型依赖于日内分量,而日内分量是特定的。与估计方法一样,预测程序也要求提供所考虑的时期的预测波动率。
p=13971 R语言提供了丰富的功能,可用于绘制R中的时间序列数据。 包括: 自动绘制 xts 时间序列对象(或任何可转换为xts的对象)的图。...来构成带有范围选择器的图表。...这是一个时间序列分析之指数平滑法示例,它说明了阴影条,指定图标题,在x轴上绘制网格以及为系列颜色使用自定义调色板的示例: graph(predicted, main = "Predicted Lung...1.R语言动态图可视化:如何、创建具有精美动画的图 2.R语言生存分析可视化分析 3.Python数据可视化-seaborn Iris鸢尾花数据 4.r语言对布丰投针(蒲丰投针)实验进行模拟和动态 5....R语言生存分析数据分析可视化案例 6.r语言数据可视化分析案例:探索brfss数据数据分析 7.R语言动态可视化:制作历史全球平均温度的累积动态折线图动画gif视频图 8.R语言高维数据的主成分pca
本文作者: 唐源,目前就职于芝加哥一家创业公司,曾参与和创作过多个被广泛使用的 R 和 Python 开源项目,是 ggfortify,lfda,metric-learn 等包的作者,也是 xgboost...(喜欢爬山和烧烤 ) ggfortify 是一个简单易用的R软件包,它可以仅仅使用一行代码来对许多受欢迎的R软件包结果进行二维可视化,这让统计学家以及数据科学家省去了许多繁琐和重复的过程,不用对结果进行任何处理就能以...来很快地对PCA、聚类以及LFDA的结果进行可视化,然后将简单介绍用 ggfortify 来对时间序列进行快速可视化的方法。...时间序列的可视化 用 ggfortify 可以使时间序列的可视化变得极其简单。接下来我将给出一些简单的例子。...可支持的R包有: zoo::zooreg xts::xts timeSeries::timSeries tseries::irts 一些例子: library(xts) autoplot(as.xts(
走你~ 原始数据:创角日志和登录日志 导入需要的库 pandas import pandas as pd 1、获取数据 #读取创角日志 df_create = pd.read_csv(r'F:\Python...#读取登录日志 df_login = pd.read_csv(r'F:\Python\常见统计——留存\登录日志\登录日志.csv') ?...2、数据预处理 1)修改时间为日期 #去掉app_channel列,并将时间格式改为日期格式 df_create = df_create[['@timestamp','role_id']] df_create...2)登录日志与创角日志横向合并 #修改创角日志中时间字段名称为'创角日期’,然后横向合并创角日志和登录日志,使得登录日志基础上相当于新增一列为用户创角日期标记 df_create.rename(columns...4、索引名称调整并导出数据 #修改结果数据表的列索引名称,然后导出表即可 df.columns=['创角日期','注册玩家数','次日留存率','3日留存率','4日留存率','5日留存率','6日留存率
,没有先后之分,所以将这两个环节合并为购物环节中的一步。...由下表数据,次日、3日、7日留存率均维持在20%左右,数据作为周留存率来看,表现还是非常优秀的,但作为次日留存来看,就不是很理想了,可以结合产品设计和新用户转化路径来分析用户的流失原因,通过不断的修改和调整来降低用户流失...1)分析2017年11月25日至12月3日 9天中每天的用户行为 由图可见在研究日期范围内用户活跃度较为平稳,仅在12月2日、3日有明显增长,该日期和11月25日、26日同为周末,故除特别营销活动外,周末能为提升用户活跃度带来的影响较小...2)激活用户 在购物环节中收藏和加入购物车都是确定购物意向的行为,没有先后之分,所以将这两个环节合并为购物环节中的一步。...淘宝APP的留存相对而言较为稳定,周留存表现优秀,但次日留存略显不理想,可以结合产品设计和新用户转化路径来分析用户的流失原因,通过不断的修改和调整来降低用户流失,提升次日留存率;另外,12月2日、3日的留存率相较之前有
p=13971 R语言提供了丰富的功能,可用于绘制R中的时间序列数据。 包括: 自动绘制 xts 时间序列对象(或任何可转换为xts的对象)的图。...各种图形叠加层,包括 阴影区域, 事件线和点 注释。 与常规R图一样(通过RStudio Viewer)在R控制台上使用。...无缝嵌入到 R Markdown 文档和 Shiny Web应用程序中。 安装 可以在R控制台,R Markdown文档和Shiny应用程序中使用折线图。...此示例使用magrittr 包中的 %>% (或“ pipe”)运算符 来构成带有范围选择器的图表。可以使用类似的语法来自定义轴,系列和其他选项。...这是一个时间序列分析之指数平滑法示例,它说明了阴影条,指定图标题,在x轴上绘制网格以及为系列颜色使用自定义调色板的示例: graph(predicted, main = "Predicted Lung
概述 和Python计算环境中的tushare包一样,在R中我们使用quantmod包接入第三方数据源,实现自定义量化分析平台的构建。...本文打算以陌陌的股票分析为背景,介绍如何通过quantmod包构建专属的量化分析平台。...原理 分析底层数据结构后,我们知道quantmod包读取后的数据格式是 xts 和 zoo,我们只需要将csv文件按一定的格式读取到内存后再进行相应变换,quantmod强大的分析和作图能力就可以为我们所用...zoo本身是一种时间序列格式,而xts则是在这基础上一种时间序列格式的加强版。在读取csv的时候,我们需要用首行确定header。在转化为zoo时,我们则需要首列来确定时间序列对应的时间。...最后通过xts转化为可以被quantmod识别的xts时间序列对象。
前一节讲到多种流量归因的模型,本质上流量归因是为了辅助我们如何将钱花的更有价值以及高效洞察用户的习惯和行为,为下一步迭代产品的功能提供数据支撑。...(如:首页推荐、搜索入口、关注入口、历史记录、我的收藏 etc),房间的效果是否符合预期,他们给整个平台以及娱乐分区分别共享了多少流量,以及带来了多少付费用户,这些都是产品和运营同学日常工作中比较关心的内容...类别 时间维度 用户类型 解决的问题 流量入口 日、周、月、季度、年 整体、新增、留存、回流 有多少用户来过此入口观看时长、弹幕量、投币量、次日留存率流量入口交叉对比分析 有多少用户来过此入口...BIGINT 用户user_id 9 up_id BIGINT UP主ID 10 ip STRING 用户IP 11 occur_time BIGINT APP埋点触发时间,毫秒时间戳 12 session_id...统一页面名称 21 r_business_id BIGINT UP主对应业务ID 22 r_business_name STRING UP主对应业务名称 本期介绍如何去做归因分析的数据采集,下一篇文章会实战介绍如何将采集的信息进行算法分析统计
R包: 数据导入 以下R包主要用于数据导入和保存数据 feather:一种快速,轻量级的文件格式。...在R和python上都可使用 readr:实现表格数据的快速导入。...broom:用于将统计模型的结果整理成数据框形式 zoo:定义了一个名zoo的S3类型对象,用于描述规则的和不规则的有序的时间序列数据。...,geoms等 ggforce:添加额外geoms等 ggrepel:用于避免图形标签重叠 ggraph:用于绘制网络状、树状等特定形状的图形 ggpmisc:光生物学相关扩展 geomnet...tibble:高效的显示表格数据的结构 stringr:一个字符串处理工具集 lubridate:用于处理日期时间数据 xts:xts是对时间序列数据(zoo)的一种扩展实现,提供了时间序列的操作接口。
在R和python上都可使用 readr:实现表格数据的快速导入。...broom:用于将统计模型的结果整理成数据框形式 zoo:定义了一个名zoo的S3类型对象,用于描述规则的和不规则的有序的时间序列数据。...,geoms等 ggforce:添加额外geoms等 ggrepel:用于避免图形标签重叠 ggraph:用于绘制网络状、树状等特定形状的图形 ggpmisc:光生物学相关扩展 geomnet...ggvis:交互式图表多功能系统 htmlwidgets:一个专为R语言打造的可视化JS库 leaflet:绘制交互式地图 dygraphs:绘制交互式时间序列图 plotly:交互式绘图包,...tibble:高效的显示表格数据的结构 stringr:一个字符串处理工具集 lubridate:用于处理日期时间数据 xts:xts是对时间序列数据(zoo)的一种扩展实现,提供了时间序列的操作接口
,或者当老用户留存率低的时候,是不是某个产品功能的问题,或者活动对老用户不友好而导致流失等等…… 今天,就给大家分享下如何用SQL实现留存率的计算,以及日常工作中如何分析留存率这个指标。...用户留存率有很多种:新客留存率、老客留存率、活跃用户留存率、购买留存率、或者某个功能使用用户的留存率等,通常计算的时间间隔为次日、3日、7日、30日、60日,根据业务不同需求可以选择不同的计算方式以及时间间隔...次日新客留存率(第1日新客留存率):指注册APP后的第二天有访问APP的行为的留存用户/注册APP当天的新客总数。...' PRIMARY KEY (`id`) USING BTREE ) COMMENT '用户登录表' 2.计算过程: 为便于理解,下面的步骤分为两步讲解:留存时间的计算,留存用户的计算,日常时间中如果觉得两个步骤麻烦可以将两个代码进行合并...例如,想要计算用户次日留存率只需在上面的计算结果表找出登录时间距离注册日期的天数=1的数据,想要计算用户7日留存率,只需要在上表找出登录时间距离注册日期的记录,代码如下: SELECT a.register_day
其中,为什么是20日最高和10日最低都是经验值,可以做为模型参数进行训练和优化。选择沪深300成分股为标的,是考虑到这些股票都是各个板块的强势股或龙头股,要符合追涨杀跌的假设条件。...2.1 数据准备 R语言本身提供了丰富的金融函数工具包,时间序列包zoo和xts,指标计算包TTR,数据处理包plyr,可视包ggplot2等,我们会一起使用这些工具包来完成建模、计算和可视化的工作。...,由于数据所有股票都是混合在一起的,而进行计算时又需要按每支票股计算,所以在数据加载时我就进行了转换,按股票代码进行分组,生成R语言的list对象,同时把每支股票的data.frame类型对象转成XTS...时间序列类型对象,方便后续的数据处理。...我们把卖号信号和止损信号,合并画到一张图上。
本文为带大家了解R语言以及分段式的步骤教程! 人们学习R语言时普遍存在缺乏系统学习方法的问题。学习者不知道从哪开始,如何进行,选择什么学习资源。...课后作业 安装R和RStudio。 安装Rcmdr、rattle和Deducer程序包。以及推荐或依赖的程序包,包括GUI。 使用库命令加载安装程序,并打开GUI。...执行时间序列分析?尝试一下像zoo,xts和quantmod程序包。 课后作业 通过“导入数据进入R语言”课程,或阅读文章1、2、3、4。掌握导入数据软件包。...在R语言中ggplot是数据可视化中最重要的包,并且很受欢迎,网上有很多它的学习资源,比如在线ggplot2教程,cheatsheet ,和以及一本由哈德利韦翰编写的教学书。...好的切入点是一本关于时间序列的书或者选择《原理与实践》这本书。在程序包方面,您需要熟悉Zoo与xts程序包。Zoo为您提供了常用的保存时间序列对象格式,而xts供了操作时间序列的数据集工具。
数据处理 #转成时间序列类型 x = rnorm(2) charvec = c(“2010-01-01”,”2010-02-01”) zoo(x,as.Date(charvec)) #包zoo xts(...xm = as.xts(tm) #包xts sm = as.timeSeries(tm) #包timeSeries #判断是否为规则时间序列 is.regular(x) #排序 zoo()和xts()...#预设的时间有重复的时间点时 zoo会报错 xts按照升序排列 timeSeries把重复部分放置在尾部; #行合并和列合并 #都是按照列名进行合并,列名不同的部分用NA代替 cbind() rbind...#时间序列数据的显示 #zoo和xts都只能按照原来的格式显示,timeSeries可以设置显示格式 print(x, format= “%m/%d/%y %H:%M”) #%m表示月,%d表示天,%y...=”quarter”) 图形展示 plot.zoo(x) plot.xts(x) plot.zoo(x, plot.type=”single”) #支持多个时间序列数据在一个图中展示 plot(x, plot.type
初识R语言支持的数据类型 1.1 向量 Vector : c() 1.2 矩阵 Matrix: matrix() 1.3 数据框 DataFrame: data.frame() 1.4 时间序列 XTS...初识R语言支持的数据类型 开始之前,需要先了解一下R语言支持的数据类型,以及这些常用类型的特点。以下4种类型是最常用的:向量、矩阵、数据框、时间序列。...data.frame() 时间序列 XTS: xts() 因子Factor:factor(补充) ?...11 2019-09-16 12 2019-09-17 13 2019-09-18 14 2019-09-19 15 关于xts类型的详细介绍,请参考文章《可扩展的时间序列xts》...例如:合并来源不同,结构相似的两个表格 3.1 向量合并 #一维向量合并直接将要合并的变量以","分割放到c()中即可。
BBands函数TTR quantmod在chartSeries中结合了xts和TTR功能策略代码我们将使用与相同的循环、收益和权益曲线计算改变的是位置向量的计算pos zoo(cbind(spread,0,0.5,-0.5),screen=c(2,2,2,2),main="Spread")复制代码一个价差策略创建价差的目的是创建一个平稳的时间序列,...也就是一个具有恒定平均值和标准差的时间序列。...组合和中国股市投资组合3.R语言时间序列:ARIMA GARCH模型的交易策略在外汇市场预测应用4.TMA三均线期指高频交易策略的R语言实现5.r语言多均线量化策略回测比较6.用R语言实现神经网络预测股票实例...7.r语言预测波动率的实现:ARCH模型与HAR-RV模型8.R语言如何做马尔科夫转换模型markov switching model9.matlab使用Copula仿真优化市场风险
领取专属 10元无门槛券
手把手带您无忧上云