首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Java中多个ifelse语句的替代设计

欢迎您关注《大数据成神之路》 今天在改老代码的过程中,亲眼见证了一段30个if-else嵌套的代码... 然后搜集了一些资料做了以下简单整理。 概述 ifelse是任何编程语言的重要组成部分。...但是我们编写了大量嵌套的if语句,这使得我们的代码更加复杂和难以维护。 接下来,让我们探索如何简化代码的中的ifelse语句写法。...重构 可以通过设计模式,来达到我们要的效果。 工厂模式 很多时候,我们遇到ifelse结构,最终在每个分支中执行类似的操作。...但是有可能嵌套的if语句只是转移到了工厂类,这违背了我们的目的。 或者,我们可以在Map中维护一个对象存储库,可以查询该存储库以进行快速查找。...稍后,业务对象用于在计算器中执行计算。 我们还可以设计一个Calculator#calculate方法来接受可以在输入上执行的命令。这将是替换嵌套if语句的另一种方法。

3.4K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Java的控制语句ifelse(一)

    介绍Java是一种流行的编程语言,拥有许多控制结构来控制程序的流程。其中,if/else控制结构是最基本和常用的结构之一。它允许程序根据条件来执行不同的代码块。...if condition is false}其中,condition是一个布尔表达式,如果它的值为true,则执行if代码块中的语句;否则执行else代码块中的语句。...示例下面是一个简单的示例,演示了如何在Java中使用if/else结构。...在这个示例中,我们将根据用户输入的年龄来确定他们是否可以投票:import java.util.Scanner;public class Main { public static void main...; } }}在上面的代码中,我们首先创建了一个Scanner对象,用于读取用户的输入。然后,我们提示用户输入年龄,并将其存储在一个名为age的整数变量中。

    36420

    SUMMARIZE函数解决之前的总计错误

    先来说一下什么意思: 两个人总计花费187.20元,但是实际需求中,可能BOSS只会处理你的有效花费。什么叫有效花费,就是这个钱你花了,并且达成销售了,BOSS才会给你报销。...先来了解一下SUMMARIZE函数。...当SUMMARIZE函数如下这种: DAX = SUMMARIZE ( '表', '表'[列] ) 这种情况下的结果类似于VALUES函数,提取不重复值。...但是有点不同,就是当表中没有这种组合的时候,那么结果就不会出现。 在数据中先使用SUMMARIZE函数看看效果: [1240] 这种就属于利用SUMMARIZE生成了一个只有我们需要维度的表。...再通俗一点就是SUMMARIZE为SUMX函数提供一个可以计算的维度,而之前的每笔成交花费这个度量值提供需要被计算的值。 * * * 小伙伴们❤GET了么?

    77630

    R语言|数据清洗

    数据清洗是数据分析流程中必不可少的一步。清洗得当的数据是可靠分析的基础,而在R语言中,有许多强大而灵活的工具可以帮助我们高效完成数据清洗。...TIPS R语言数据清洗常用工具 1. Base R R语言自带的base包提供了许多内置函数用于数据清洗,例如is.na()、duplicated()等。...2. dplyr dplyr是R语言中最受欢迎的数据操作包之一,擅长数据清洗和操作,语法简洁直观。...= ifelse(is.na(Salary), mean(Salary, na.rm = TRUE), Salary) ) data_filled 格式转换:在数据清洗中,经常需要将列转换为合适的数据类型...总结: 数据清洗是分析的起点,虽然复杂但有规律可循。本文通过具体的案例,展示了R语言中常见的数据清洗方法和技巧,希望能为你的分析工作带来帮助。

    12910

    dplyr中的across操作

    dplyr中的across函数取代了之前的xx_if/xx_at/xx_all,用法更加灵活,初学时觉得不如xx_if/xx_at/xx_all简单易懂,用习惯后真是利器!...主要是介绍across函数的用法,这是dplyr1.0才出来的一个函数,大大简化了代码 可用于对多列做同一个操作。...一般用法 陷阱 across其他连用 和filter()连用 一般用法 library(dplyr, warn.conflicts = FALSE) across()有两个基本参数: .cols:选择你想操作的列....fn:你想进行的操作,可以使一个函数或者多个函数组成的列表 可以替代_if(),at_(),all_() starwars %>% summarise(across(where(is.character...,只要放入列表中即可: min_max <- list( min = ~min(.x, na.rm = TRUE), max = ~max(.x, na.rm = TRUE) ) starwars

    72030

    「R」绘制分组排序点图

    在 R 包中,我有看到过 maftools 中可以绘制这样的图,用来表示新的数据队列与 TCGA 数据的比较,这也是应用于 TMB 分析。因为研究问题,我最近也想尝试使用改种图形来展示数据。...而且,该图可以拓展到任意可以适应的场景下,所以我想基于 ggplot2 来创建一个通用的绘图函数。 ?...源代码 目前该图的实现代码如下,代码通过 https://github.com/ShixiangWang/sigminer/blob/master/R/show_group_distribution.R...使用 ggplot2 实现这个图我遇到了不少难点,在实现的过程中除了深入理解了 ggplot2,我也同时感受到了它的灵活和限制。...难度有以下几点,感兴趣的读者不妨带着这些问题阅读源代码: 怎么对点排序,构建绘图坐标? 怎么对不同的 panel 展示不同的背景颜色?theme() 中的选项都不支持向量化,所以必须另辟蹊径。

    1.7K30

    R中的sweep函数

    函数的用途 base包中的sweep函数是处理统计量的工具,一般可以结合apply()函数来使用。...函数的参数 sweep(x, MARGIN, STATS, FUN = "-", check.margin = TRUE, ...) x:即要处理的原数据集 MARGIN:对行或列,或者数列的其他维度进行操作...…… 下面我们结合几个具体的例子来看 #创建一个4行3列的矩阵 M = matrix( 1:12, ncol=3) 1.每一行都减去这一行的均值 #方法一,通过rowMeans函数来计算每一行的均值...sweep(M,1,rowMeans(M)) #方法二,通过apply函数来计算每一行的均值,MARGIN=1,对行做操作 sweep(M,1,apply(M,1,mean)) 2.每一行列都减去这一列的均值...#方法一,通过colMeans函数来计算每一列的均值 sweep(M,2,colMeans(M)) #方法二,通过apply函数来计算每一列的均值,MARGIN=2,对列做操作 sweep(M,2,

    2.7K20

    「R」数据操作(八):dplyr 的 do, do, do

    关于dplyr的基本操作我已经写过很多笔记了,不再赘述,这篇文章重点介绍 dplyr 的一个函数 do() 的用法。...与data.table类似,dplyr也提供了do()函数来对每组数据进行任意操作。 例如将diamonds按cut分组,每组都按log(price) ~ carat拟合一个线性模型。...和data.table不同的是,我们需要为操作指定一个名称,以便将结果存储在列中。而且do()表达式不能直接在分组数据的语义下计算 ,我们需要使用.来表示数据。...,每个元素都是模型的结果,包含线性回归对象的列表。...假如我们需要分析toy_tests数据,要对每种产品的质量和耐久性进行汇总。如果只需要样本数最多的3个测试记录,并且每个产品的质量和耐久性是经样本数加权的平均数,下面是做法。

    1.7K31

    R中的替换函数gsub

    R中gsub替换函数的参数如下 gsub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE,...vector举例如下: > x R Tutorial","PHP Tutorial", "HTML Tutorial") > gsub("Tutorial","Examples",x) #将...Tutorial替换成Examplers [1] "R Examples" "PHP Examples" "HTML Examples" 还有其他的一些例子来灵活使用这个函数,结合正则表达式。...,我们知道组织病理分期分成stage I,stage II,stage III和stage IV四个分期 接下来我们试着把组织病理分期从四个组合并成两个组,并转换成因子 我们使用gsub函数...,并转换成因子 我们还是使用gsub函数 #删除组织病理学分期末尾的A,B或者C等字母,例如Stage IIIA,Stage IIIB stage=gsub("[ABCD]$","",clin$ajcc_pathologic_stage

    3.2K20

    R」R 的函数

    首先构造一个函数,它有一个参数x。这个函数的参数列表中还包含了一个省略号,因此这个省略号将成为我们调用的summary函数的参数。...这有点类似于shell中通过$引用相应的参数。看来很多的编程语言都存有相同的参数传递机制。 函数的属性 R中包含了一系列的函数用于提取函数类型对象的信息。...NULL 如果我们想要在R代码中对函数的参数列表进行操作,formals函数是一个很好的工具,它会返回一个配对列表对象(对应参数名和设定的默认参数值)。...formals函数类似的函数body来返回函数的函数体: > body(f) { x + y + z } 我们也可以将它放在赋值语句的左边,通过赋值操作来改变函数体。...解释器将这样递归地在各个环境中寻找直到找到该符号或到达全局环境。加入解释器在到达全局环境时依然没有找到var,那么R会在全局环境中指定var的值为value。

    1.3K20

    「r」dplyr 里的 join 与 base 里的 merge 存在差异

    今天在使用连接操作时发现:虽然都是合并操作函数,dplyr 包里的 *_join() 和基础包里面的 merge() 存在差异,不同的数据结构,结果也会存在偏差。...相同的数据,不同的操作函数存在差异 在进行连接操作时,我们会发现 dplyr 的结果会报错!...所以使用 dplyr 提供的连接函数报错是正常的,但有意思的是,基础包提供的 merge() 函数可以完成连接操作,真是优秀(感兴趣的朋友可以看下测试下 merge 函数源代码)!...data.table 构造的数据集结果: purrr::reduce(x2, dplyr::full_join) #> Joining, by = "r1" #> Error: `by` must be...本质上是 data.table 体格的泛型函数不支持类似基础包中的操作。 如何编写代码支持对上述数据集的连接操作?

    1.6K30

    R中的stack和unstack函数

    我们用R做数据处理的时候,经常要对数据的格式进行变换。例如将数据框(dataframe)转换成列表(list),或者反过来将列表转换成数据框。...那么今天小编就给大家介绍一对R函数来实现这样的功能。 这一对函数就叫做stack和unstack。从字面意思上来看就是堆叠和去堆叠,就像下面这张图展示的这样。...那么R里面这两个函数具体可以实现什么样的功能呢?下面这张图可以帮助大家来理解。unstack就是根据数据框的第二列的分组信息,将第一列的数据划分到各个组,是一个去堆叠的过程。...一、unstack 下面我们来看几个具体的例子 例如现在我们手上有一个数据框,里面的数据来自PlantGrowth 我们可以先看看PlantGrowth 中的内容,第一列是重量,第二列是不同的处理方式...,后面小编会使用这两个函数来给大家举个真实的应用案例,敬请期待。

    5.4K30
    领券