首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

RDMA内存缓冲区

是指使用远程直接内存访问(RDMA)技术进行数据传输时所使用的缓冲区。RDMA是一种高性能、低延迟的数据传输技术,它允许在计算机网络中直接访问远程计算机的内存,而无需经过操作系统的参与。

RDMA内存缓冲区的分类:

  1. 发送缓冲区(Send Buffer):用于存储发送数据的缓冲区。
  2. 接收缓冲区(Receive Buffer):用于存储接收数据的缓冲区。

RDMA内存缓冲区的优势:

  1. 高性能:RDMA技术能够实现零拷贝数据传输,减少了数据传输过程中的CPU开销和内存拷贝次数,从而提高了数据传输的性能。
  2. 低延迟:由于RDMA技术绕过了操作系统的内核,直接访问内存,因此可以减少数据传输的延迟,提高系统响应速度。
  3. 高并发:RDMA技术支持多个并发连接,可以同时进行多个数据传输操作,提高系统的并发处理能力。

RDMA内存缓冲区的应用场景:

  1. 大规模数据中心:在大规模数据中心中,RDMA内存缓冲区可以用于高性能计算、大规模数据分析等场景,提高数据传输效率和系统性能。
  2. 分布式存储系统:RDMA内存缓冲区可以用于分布式存储系统中的数据传输,提高数据传输速度和系统的可扩展性。
  3. 高性能计算:在高性能计算领域,RDMA内存缓冲区可以用于加速计算节点之间的数据传输,提高计算效率和系统性能。

腾讯云相关产品和产品介绍链接地址:

腾讯云提供了RDMA技术相关的产品和服务,例如:

  1. 弹性云服务器(Elastic Cloud Server,ECS):提供了支持RDMA技术的云服务器实例,可用于高性能计算和大规模数据处理等场景。详细信息请参考:https://cloud.tencent.com/product/cvm
  2. 弹性高性能计算(Elastic High-Performance Computing,EHPC):提供了支持RDMA技术的高性能计算集群,可用于科学计算、工程仿真等场景。详细信息请参考:https://cloud.tencent.com/product/ehpc
  3. 弹性MapReduce(Elastic MapReduce,EMR):提供了支持RDMA技术的大数据处理服务,可用于大规模数据分析和处理。详细信息请参考:https://cloud.tencent.com/product/emr

请注意,以上仅为示例,实际应根据具体需求选择适合的产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 在高速网卡中实现可编程传输协议

    摘要:数据中心网络协议栈正在转向硬件,以在低延迟和低CPU利用率的情况下实现100 Gbps甚至更高的数据速率。但是,NIC中络协议栈的硬连线方式扼杀了传输协议的创新。本文通过设计Tonic(一种用于传输逻辑的灵活硬件架构)来实现高速网卡中的可编程传输协议。在100Gbps的速率下,传输协议必须每隔几纳秒在NIC上仅使用每个流状态的几千比特生成一个数据段。通过识别跨不同传输协议的传输逻辑的通用模式,我们为传输逻辑设计了一个高效的硬件“模板”,该模板在使用简单的API编程的同时可以满足这些约束。基于FPGA的原型系统实验表明,Tonic能够支持多种协议的传输逻辑,并能满足100Gbps背靠背128字节数据包的时序要求。也就是说,每隔10 ns,我们的原型就会为下游DMA流水线的一千多个活动流中的一个生成一个数据段的地址,以便获取和传输数据包。

    03

    Linux源码分析-RDMA的通信连接管理CM模块

    RDMA CM 是一种通信管理器,用于设置可靠、连接和不可靠的数据报数据传输。 它提供用于建立连接的 RDMA 传输中立接口。 API 概念基于套接字,但适用于基于队列对 (QP) 的语义:通信必须通过特定的 RDMA 设备进行,并且数据传输基于消息。 RDMA CM 可以控制 RDMA API 的 QP 和通信管理(连接建立/拆除)部分,或者仅控制通信管理部分。 它与 libibverbs 库定义的 verbs API 结合使用。 libibverbs 库提供了发送和接收数据所需的底层接口。 RDMA CM 可以异步或同步操作。 用户通过在特定调用中使用 rdma_cm 事件通道参数来控制操作模式。 如果提供了事件通道,rdma_cm 标识符将报告该通道上的事件数据(例如连接结果)。 如果未提供通道,则所选 rdma_cm 标识符的所有 rdma_cm 操作将被阻止,直到完成。 RDMA CM 为不同的 libibverbs 提供商提供了一个选项来宣传和使用特定于该提供商的各种 QP 配置选项。 此功能称为 ECE(增强连接建立)

    01

    Mercury为高性能计算启用远程过程调用(RPC)

    远程过程调用(RPC)是分布式服务广泛使用的一种技术。 这种技术现在越来越多地用于高性能计算 (HPC) 的上下文中,它允许将例程的执行委托给远程节点,这些节点可以留出并专用于特定任务。 然而,现有的 RPC 框架采用基于套接字的网络接口(通常在 TCP/IP 之上),这不适合 HPC 系统,因为此 API 通常不能很好地映射到这些系统上使用的本机网络传输,从而导致网络性能较低。 此外,现有的 RPC 框架通常不支持处理大数据参数,例如在读取或写入调用中发现的参数。我们在本文中提出了一个异步 RPC 接口,专门设计用于 HPC 系统,允许参数和执行请求的异步传输和直接支持大数据参数。 该接口是通用的,允许传送任何函数调用。 此外,网络实现是抽象的,允许轻松移植到未来的系统并有效使用现有的本地传输机制

    03

    Nano Transport:一种硬件实现的用于SmartNIC的低延迟、可编程传输层

    摘要:传输协议可以在NIC(网卡)硬件中实现,以增加吞吐量、减少延迟并释放CPU周期。如果已知理想的传输协议,那么最佳的实现方法很简单:直接将它烧入到固定功能的硬件中。但是传输协议仍在发展,每年都有提出新的创新算法。最近的一项研究提出了Tonic,这是一种Verilog可编程硬件传输层。我们在这项工作的基础上提出了一种称为纳米传输层的新型可编程硬件传输层架构,该架构针对主导大型现代分布式数据中心应用中极低延迟的基于消息的 RPC(远程过程调用)进行了优化。Nano Transport使用P4语言进行编程,可以轻松修改硬件中的现有(或创建全新的)传输协议。我们识别常见事件和基本操作,允许流水化、模块化、可编程的流水线,包括分组、重组、超时和数据包生成,所有这些都由程序设计员来表达。

    03

    RecoNIC 入门:SmartNIC 上支持 RDMA 的计算卸载-FPGA-智能网卡-AMD-Xilinx

    当今的数据中心由数千台网络连接的主机组成,每台主机都配有 CPU 和 GPU 和 FPGA 等加速器。 这些主机还包含以 100Gb/s 或更高速度运行的网络接口卡 (NIC),用于相互通信。 我们提出了 RecoNIC,这是一种基于 FPGA、支持 RDMA 的 SmartNIC 平台,旨在通过使网络数据尽可能接近计算来加速计算,同时最大限度地减少与数据副本(在以 CPU 为中心的加速器系统中)相关的开销。 由于 RDMA 是用于改善数据中心工作负载通信的事实上的传输层协议,因此 RecoNIC 包含一个用于高吞吐量和低延迟数据传输的 RDMA 卸载引擎。 开发人员可以在 RecoNIC 的可编程计算模块中灵活地使用 RTL、HLS 或 Vitis Networking P4 来设计加速器。 这些计算块可以通过 RDMA 卸载引擎访问主机内存以及远程对等点中的内存。 此外,RDMA 卸载引擎由主机和计算块共享,这使得 RecoNIC 成为一个非常灵活的平台。 最后,我们为研究社区开源了 RecoNIC,以便能够对基于 RDMA 的应用程序和用例进行实验

    01

    网络虚拟化技术:RDMA技术论文

    分布式系统利用卸载来减少 CPU 负载变得越来越流行。远程直接内存访问 (RDMA) 卸载尤其变得流行。然而,RDMA 仍然需要 CPU 干预来处理超出简单远程内存访问范围的复杂卸载。因此,卸载潜力是有限的,基于 RDMA 的系统通常必须解决这些限制。 我们提出了 RedN,这是一种原则性的、实用的方法,可以实现复杂的 RDMA 卸载,无需任何硬件修改。使用自修改 RDMA 链,我们将现有的 RDMA 动词接口提升为图灵完备的编程抽象集。我们探索使用商用 RDMA NIC 在卸载复杂性和性能方面的可能性。我们展示了如何将这些 RDMA 链集成到应用程序中,例如 Memcached 键值存储,从而使我们能够卸载复杂的任务,例如键查找。与使用单侧 RDMA 原语(例如 FaRM-KV)的最先进的 KV 设计以及传统的 RPC-over-RDMA 方法相比,RedN 可以将键值获取操作的延迟减少高达 2.6 倍。此外,与这些基准相比,RedN 提供性能隔离,并且在存在争用的情况下,可以将延迟减少高达 35 倍,同时为应用程序提供针对操作系统和进程崩溃的故障恢复能力。

    04

    UCX-UCT统一通信传输层1-简介

    UCT(Unified Communication Transport)是一个传输层,它抽象了各种硬件架构之间的差异,并提供了支持通信协议实现的低级 API。该层的主要目标是以最小的软件开销提供对硬件网络资源的直接有效的访问。为此,UCT 依赖于低级驱动程序,例如 uGNI、Verbs、共享内存、ROCM、CUDA。此外,该层还提供通信上下文管理(基于线程和应用程序级别, 如: ucs_async_context_create, uct_worker_create)以及设备特定存储器(包括加速器中的存储器)的分配和管理的构造。在通信 API 方面,UCT 定义了立即(短消息,如: uct_ep_am_short)、缓冲区复制发送(bcopy,如: uct_ep_am_bcopy)和零拷贝(zcopy, 如: uct_ep_am_zcopy)通信操作的接口。短操作针对可以就地发布和完成的小消息进行了优化。bcopy 操作针对通常通过所谓的弹跳缓冲区发送的中等大小的消息进行了优化。最后,zcopy 操作公开零复制内存到内存通信语义。

    03
    领券