首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PySpark UD(A)F 的高效使用

在功能方面,现代PySpark在典型的ETL和数据处理方面具有与Pandas相同的功能,例如groupby、聚合等等。...1.UDAF 聚合函数是对一组行进行操作并产生结果的函数,例如sum()或count()函数。用户定义的聚合函数(UDAF)通常用于更复杂的聚合,而这些聚合并不是常使用的分析工具自带的。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...数据帧转换为一个新的数据帧,其中所有具有复杂类型的列都被JSON字符串替换。...现在,还可以轻松地定义一个可以处理复杂Spark数据帧的toPandas。

19.7K31

Structured Streaming 编程指南

你可以像表达静态数据上的批处理计算一样表达流计算。Spark SQL 引擎将随着流式数据的持续到达而持续运行,并不断更新结果。...在这个模型中,当有新数据时,Spark负责更新结果表,从而减轻用户的工作。作为例子,我们来看看该模型如何处理 event-time 和延迟的数据。...此外,该模型也可以自然的处理接收到的时间晚于 event-time 的数据。因为 Spark 一直在更新结果表,所以它可以完全控制更新旧的聚合数据,或清除旧的聚合以限制中间状态数据的大小。...结果表将如下所示: ? 由于这里的 window 与 group 非常类似,在代码上,你可以使用 groupBy 和 window 来表达 window 聚合。...请注意,如果在创建对象时立即进行任何初始化,那么该初始化将在 driver 中发生,这可能不是你预期的 open 方法可以使用 version 和 partition 来决定是否需要写入序列的行。

2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在 PySpark 中,如何使用 groupBy() 和 agg() 进行数据聚合操作?

    在 PySpark 中,可以使用groupBy()和agg()方法进行数据聚合操作。groupBy()方法用于按一个或多个列对数据进行分组,而agg()方法用于对分组后的数据进行聚合计算。...以下是一个示例代码,展示了如何在 PySpark 中使用groupBy()和agg()进行数据聚合操作:from pyspark.sql import SparkSessionfrom pyspark.sql.functions...读取数据并创建 DataFrame:使用 spark.read.csv 方法读取 CSV 文件,并将其转换为 DataFrame。...按某一列进行分组:使用 groupBy("column_name1") 方法按 column_name1 列对数据进行分组。进行聚合计算:使用 agg() 方法对分组后的数据进行聚合计算。...avg()、max()、min() 和 sum() 是 PySpark 提供的聚合函数。alias() 方法用于给聚合结果列指定别名。显示聚合结果:使用 result.show() 方法显示聚合结果。

    9610

    SQL、Pandas和Spark:如何实现数据透视表?

    在上述简介中,有两个关键词值得注意:排列和汇总,其中汇总意味着要产生聚合统计,即groupby操作;排列则实际上隐含着使汇总后的结果有序。...03 Spark实现数据透视表 Spark作为分布式的数据分析工具,其中spark.sql组件在功能上与Pandas极为相近,在某种程度上个人一直将其视为Pandas在大数据中的实现。...而后,前面已分析过数据透视表的本质其实就是groupby操作+pivot,所以spark中刚好也就是运用这两个算子协同完成数据透视表的操作,最后再配合agg完成相应的聚合统计。...仍然是在SQL中构造临时数据表,如下: ? 而后我们采取逐步拆解的方式尝试数据透视表的实现: 1. 利用groupby实现分组聚合统计,这一操作非常简单: ?...上述SQL语句中,仅对sex字段进行groupby操作,而后在执行count(name)聚合统计时,由直接count聚合调整为两个count条件聚合,即: 如果survived字段=0,则对name计数

    3K30

    Spark Structured Streaming + Kafka使用笔记

    数据源 对于Kafka数据源我们需要在Maven/SBT项目中引入: groupId = org.apache.spark artifactId = spark-sql-kafka-0-10_2.11...然后对window()操作的结果,以window列和 word列为 key,做groupBy().count()操作 这个操作的聚合过程是增量的(借助 StateStore) 最后得到一个有...window, word, count 三列的状态集 4.2 OutputModes 我们继续来看前面 window() + groupBy().count() 的例子,现在我们考虑将结果输出,即考虑...4.3 Watermark 机制 对上面这个例子泛化一点,是: (a+) 在对 event time 做 window() + groupBy().aggregation() 即利用状态做跨执行批次的聚合...请注意,如果在创建对象时立即在类中进行任何初始化,那么该初始化将在 driver 中发生(因为这是正在创建的实例)。

    1.6K20

    Spark Structured Streaming + Kafka使用笔记

    数据源 对于Kafka数据源我们需要在Maven/SBT项目中引入: groupId = org.apache.spark artifactId = spark-sql-kafka-0-10_2.11...然后对window()操作的结果,以window列和 word列为 key,做groupBy().count()操作 这个操作的聚合过程是增量的(借助 StateStore) 最后得到一个有 window..., word, count 三列的状态集 4.2 OutputModes 我们继续来看前面 window() + groupBy().count() 的例子,现在我们考虑将结果输出,即考虑 OutputModes...4.3 Watermark 机制 对上面这个例子泛化一点,是: (a+) 在对 event time 做 window() + groupBy().aggregation() 即利用状态做跨执行批次的聚合...请注意,如果在创建对象时立即在类中进行任何初始化,那么该初始化将在 driver 中发生(因为这是正在创建的实例)。

    3.5K31

    使用 Apache Hudi + Daft + Streamlit 构建 Lakehouse 分析应用

    您可以在此处指定表位置 URI • select() — 这将从提供的表达式创建一个新的数据帧(类似于 SQL SELECT) • collect() — 此方法执行整个数据帧并将结果具体化 我们首先从之前引入记录的...由于 Daft DataFrame是惰性的,这意味着它们在明确指示之前不会计算结果,因此在这些操作之后不会立即显示结果。在此示例中,我们仅使用 Daft 来延迟读取数据和选择列的任务。...构建 Streamlit 仪表板 截至目前,我们将 Hudi 表存储为 Daft 数据帧 df_analysis 。...例如,仪表板中的某些图表需要聚合值(例如每个类别的产品品种)。在这些情况下,我们不是在 Pandas 中执行聚合,而是利用 Daft 的功能先聚合数据,然后将结果传递到可视化库。...然后将结果转换为 Pandas 数据帧,以便与可视化图表一起使用。从仪表板的设计角度来看,我们将有四个图表来回答一些业务问题,以及一个过滤器来分析 category 数据。

    15410

    PySpark入门级学习教程,框架思维(中)

    Spark SQL使用 在讲Spark SQL前,先解释下这个模块。这个模块是Spark中用来处理结构化数据的,提供一个叫SparkDataFrame的东西并且自动解析为分布式SQL查询数据。...,可以写多个聚合方法,如果不写groupBy的话就是对整个DF进行聚合 # DataFrame.alias # 设置列或者DataFrame别名 # DataFrame.groupBy # 根据某几列进行聚合...Pearson相关系数 df.corr("age", "score", method="pearson") # 0.9319004030498815 # DataFrame.cube # 创建多维度聚合的结果...,通常用于分析数据,比如我们指定两个列进行聚合,比如name和age,那么这个函数返回的聚合结果会 # groupby("name", "age") # groupby("name") # groupby...("age") # groupby(all) # 四个聚合结果的union all 的结果 df1 = df.filter(df.name !

    4.4K30

    使用Spark轻松做数据透视(Pivot)

    这种结构,也是一般关系型数据库的数据结构。 透视表 透视表没有一个明确的定义,一般是观念上是指,为了方便进行数据分析,而对数据进行一定的重排,方便后续分析,计算等操作。...通过一般的定义,我们能看出,透视表主要用于分析,所以,一般的场景我们都会先对数据进行聚合,以后再对数据分析,这样也更有意义。...对加载后的dataset只需要进行3步设置 groupBy 设置分组列 pivot 设置pivot列 agg 设置聚合方式,可以是求和、平均等聚合函数 我们得到的输出结果如下: +-------+---...的时候,不需要将project列写入了,如果写入成了 groupBy(col("date"),col("project")) 那么结果就是这样了 +-------+-------+------+----...为了防止OOM的情况,spark对pivot的数据量进行了限制,其可以通过spark.sql.pivotMaxValues 来进行修改,默认值为10000,这里是指piovt后的列数。

    3.3K20

    SQL、Pandas和Spark:常用数据查询操作对比

    join on:指定查询数据源自多表连接及条件 where:设置查询结果过滤条件 group by:设置分组聚合统计的字段 having:依据聚合统计后的字段进一步过滤 order by:设置返回结果排序依据...,则对多表建立连接关系 where:根据查询条件过滤数据记录 group by:对过滤结果进行分组聚合 having:对分组聚合结果进行二次过滤 select:对二次过滤结果抽取目标字段 distinct...Pandas:Pandas中groupby操作,后面可接多个关键字,常用的其实包括如下4类: 直接接聚合函数,如sum、mean等; 接agg函数,并传入多个聚合函数; 接transform,并传入聚合函数...,但不聚合结果,即聚合前有N条记录,聚合后仍然有N条记录,类似SQL中窗口函数功能,具体参考Pandas中groupby的这些用法你都知道吗?...接apply,实现更为定制化的函数功能,参考Pandas中的这3个函数,没想到竟成了我数据处理的主力 Spark:Spark中的groupBy操作,常用的包括如下3类: 直接接聚合函数,如sum、avg

    2.5K20

    最大化 Spark 性能:最小化 Shuffle 开销

    Spark 中的 Shuffle 是什么? Apache Spark 通过将数据分布在多个节点并在每个节点上单独计算值来处理查询。然而有时节点需要交换数据。...毕竟这就是 Spark 的目的——处理单台机器无法容纳的数据。 Shuffle 是分区之间交换数据的过程。因此,当源分区和目标分区驻留在不同的计算机上时,数据行可以在工作节点之间移动。...为了 Shuffle ,Spark 生成一组 map 任务来组织数据,以及一组 reduce 任务来聚合数据。...这个命名来自 MapReduce,与 Spark 的 map 和 reduce 操作没有直接关系。 各个 map 任务的结果都会保存在内存中,直到它们无法容纳为止。...broadcast_categories.category_id) 避免使用groupByKey():首选reduceByKey()或aggregateByKey(),而不是groupByKey(),因为前者在打乱数据之前在本地执行部分聚合

    39321

    PySpark SQL——SQL和pd.DataFrame的结合体

    spark.read.jdbc()则可用于读取数据库 2)数据写入。...groupby/groupBy:分组聚合 分组聚合是数据分析中最为常用的基础操作,其基本用法也与SQL中的group by关键字完全类似,既可直接根据某一字段执行聚合统计,也可根据某一列的简单运算结果进行统计...groupby和groupBy是互为别名的关系,二者功能完全一致。...之后所接的聚合函数方式也有两种:直接+聚合函数或者agg()+字典形式聚合函数,这与pandas中的用法几乎完全一致,所以不再赘述,具体可参考Pandas中groupby的这些用法你都知道吗?一文。...这里补充groupby的两个特殊用法: groupby+window时间开窗函数时间重采样,对标pandas中的resample groupby+pivot实现数据透视表操作,对标pandas中的pivot_table

    10K20
    领券