首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Spark中executor和container的区别

在Spark中,executor和container是两个不同的概念。

  1. Executor:
    • 概念:Executor是Spark中的工作单元,负责执行任务和存储数据。
    • 分类:根据资源管理器的不同,Executor可以分为两种类型:独立部署模式下的Executor和集群管理器模式下的Executor。
    • 优势:Executor可以根据任务的需求动态分配资源,提高任务的执行效率和资源利用率。
    • 应用场景:Executor常用于分布式计算场景,如大规模数据处理、机器学习等。
    • 腾讯云相关产品:腾讯云的弹性MapReduce(EMR)是一种基于Hadoop和Spark的大数据处理服务,可以灵活调整Executor的数量和配置,适用于各种规模的数据处理任务。详情请参考:腾讯云弹性MapReduce(EMR)
  2. Container:
    • 概念:Container是一种轻量级的虚拟化技术,用于隔离和管理应用程序及其依赖的资源。
    • 分类:常见的容器技术包括Docker和Kubernetes等。
    • 优势:容器可以提供一致的运行环境,简化应用程序的部署和管理,提高开发和运维效率。
    • 应用场景:容器常用于构建、打包和部署应用程序,实现快速、可移植的应用交付。
    • 腾讯云相关产品:腾讯云的容器服务(TKE)是一种基于Kubernetes的容器管理平台,提供高可用、弹性伸缩的容器集群,适用于容器化应用的部署和管理。详情请参考:腾讯云容器服务(TKE)

总结:在Spark中,executor是Spark的工作单元,负责执行任务和存储数据;而container是一种轻量级的虚拟化技术,用于隔离和管理应用程序及其依赖的资源。它们在功能和应用场景上有所不同,但都可以通过腾讯云的相关产品来实现高效的分布式计算和容器化应用部署。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 大数据技术之_19_Spark学习_06_Spark 源码解析 + Spark 通信架构、脚本解析、standalone 模式启动、提交流程 + Spark Shuffle 过程 + Spark 内存

    上图展示了 2 个 RDD 进行 JOIN 操作,体现了 RDD 所具备的 5 个主要特性,如下所示:   • 1)一组分区   • 2)计算每一个数据分片的函数   • 3)RDD 上的一组依赖   • 4)可选,对于键值对 RDD,有一个 Partitioner(通常是 HashPartitioner)   • 5)可选,一组 Preferred location 信息(例如,HDFS 文件的 Block 所在 location 信息) 有了上述特性,能够非常好地通过 RDD 来表达分布式数据集,并作为构建 DAG 图的基础:首先抽象一个分布式计算任务的逻辑表示,最终将任务在实际的物理计算环境中进行处理执行。

    03

    spark面试题目_面试提问的问题及答案

    1.Spark master使用zookeeper进行HA的,有哪些元数据保存在Zookeeper? 答:spark通过这个参数spark.deploy.zookeeper.dir指定master元数据在zookeeper中保存的位置,包括Worker,Driver和Application以及Executors。standby节点要从zk中,获得元数据信息,恢复集群运行状态,才能对外继续提供服务,作业提交资源申请等,在恢复前是不能接受请求的。另外,Master切换需要注意2点 1)在Master切换的过程中,所有的已经在运行的程序皆正常运行!因为Spark Application在运行前就已经通过Cluster Manager获得了计算资源,所以在运行时Job本身的调度和处理和Master是没有任何关系的! 2) 在Master的切换过程中唯一的影响是不能提交新的Job:一方面不能够提交新的应用程序给集群,因为只有Active Master才能接受新的程序的提交请求;另外一方面,已经运行的程序中也不能够因为Action操作触发新的Job的提交请求; 2.Spark master HA 主从切换过程不会影响集群已有的作业运行,为什么? 答:因为程序在运行之前,已经申请过资源了,driver和Executors通讯,不需要和master进行通讯的。 3.Spark on Mesos中,什么是的粗粒度分配,什么是细粒度分配,各自的优点和缺点是什么? 答:1)粗粒度:启动时就分配好资源, 程序启动,后续具体使用就使用分配好的资源,不需要再分配资源;好处:作业特别多时,资源复用率高,适合粗粒度;不好:容易资源浪费,假如一个job有1000个task,完成了999个,还有一个没完成,那么使用粗粒度,999个资源就会闲置在那里,资源浪费。2)细粒度分配:用资源的时候分配,用完了就立即回收资源,启动会麻烦一点,启动一次分配一次,会比较麻烦。 4.如何配置spark master的HA? 1)配置zookeeper 2)修改spark_env.sh文件,spark的master参数不在指定,添加如下代码到各个master节点 export SPARK_DAEMON_JAVA_OPTS=”-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=zk01:2181,zk02:2181,zk03:2181 -Dspark.deploy.zookeeper.dir=/spark” 3) 将spark_env.sh分发到各个节点 4)找到一个master节点,执行./start-all.sh,会在这里启动主master,其他的master备节点,启动master命令: ./sbin/start-master.sh 5)提交程序的时候指定master的时候要指定三台master,例如 ./spark-shell –master spark://master01:7077,master02:7077,master03:7077 5.Apache Spark有哪些常见的稳定版本,Spark1.6.0的数字分别代表什么意思? 答:常见的大的稳定版本有Spark 1.3,Spark1.6, Spark 2.0 ,Spark1.6.0的数字含义 1)第一个数字:1 major version : 代表大版本更新,一般都会有一些 api 的变化,以及大的优化或是一些结构的改变; 2)第二个数字:6 minor version : 代表小版本更新,一般会新加 api,或者是对当前的 api 就行优化,或者是其他内容的更新,比如说 WEB UI 的更新等等; 3)第三个数字:0 patch version , 代表修复当前小版本存在的一些 bug,基本不会有任何 api 的改变和功能更新;记得有一个大神曾经说过,如果要切换 spark 版本的话,最好选 patch version 非 0 的版本,因为一般类似于 1.2.0, … 1.6.0 这样的版本是属于大更新的,有可能会有一些隐藏的 bug 或是不稳定性存在,所以最好选择 1.2.1, … 1.6.1 这样的版本。 通过版本号的解释说明,可以很容易了解到,spark2.1.1的发布时是针对大版本2.1做的一些bug修改,不会新增功能,也不会新增API,会比2.1.0版本更加稳定。 6.driver的功能是什么? 答: 1)一个Spark作业运行时包括一个Driver进程,也是作业的主进程,具有main函数,并且有SparkContext的实例,是程序的人口点;2)功能:负责向集群申请资源,向master注册信息,负责了作业的调度,,负责作业的解析、生成Stage并调度Task到E

    02
    领券