首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

安装tensorflow GPU版本–tensorflow-gpu版本与CUDA版本对应关系(持续更新,目前到TF2.7)「建议收藏」

一、WIndows安装GPU版本tensorflow注意一下几个问题一般就不会出错 (1)确定自己要安装哪个版本的tensorflow-gpu; (1)根据自己要装的tensorflow-gpu版本确定要下载的...二、tensorflow-gpu版本与CUDA版本对应关系 不同版本的tensorflow-gpu与CUDA对应关系如下表所示(图片有点旧了,python版本是2.7和3.3-3.8): 对于版本号大于...1.13的tensorflow-gpu的1.x版本,如1.14、1.15,建议安装CUDA10.0,不要安装CUDA10.1,安装后会提示缺少很多库文件,而导致GPU版本的tensorflow无法使用,...的cuDNN都支持CUDA10.1,7.4只能支持到CUDA10.0,一般如果安装的CUDA10.0的话,cuDNN7.4是可以的。...四、检验tensorflow-gpu安装成功 输入以下命令: import tensorflow as tf a = tf.constant([1.0,2.0,3.0],shape = [3], name

11.3K20

CUDA、CUDNN在windows下的安装及配置

win10+GTX1050Ti+anaconda3+tensorflow1.14.0+cuda10.0+cudnn7.6.1.34(带GPU使用检测) 一、安装前的准备 (1)查看自己N卡支持的CUDA...\CUDA10.1\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include; D:\360Downloads\CUDA10.1\NVIDIA GPU Computing...Could not find ‘cudart64_100.dll’错误 tensorflow – 仅支持 CPU 的最新稳定版(建议新手使用) tensorflow-gpu – 支持 GPU 的最新稳定版...:找不到指定的模块 错误原因:CUDA版本与Tensorflow版本冲突 解决方案:卸载CUDA10.1,重新装CUDA10.0,同时添加对应的CUDNN,具体操作方法如上 (4)ImportError...: Nomodule named ‘_pywrap_tensorflow_internal’ 错误原因: CUDA10.1与tensorflow-gpu版本冲突 参考博客 windows下安装tensorflow

2.5K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Win10系统下Pytorch1.7 + tensorflow2.x +CUDA10.1 安装与配置

    引言 最近把tensorflow跟pytorch都重新安装了,发现我以前安装的CUDA10.0的版本无法跟tensorflow2.x适配了,于是我又重新卸载安装了CUDA10.1 +cuDNN8.0.x...首先是下载CUDA10.1与cuDNN7.6.5,这个需要到官方网站上下载相关的版本软件,下载到之后,首先安装CUDA10.1,安装好之后,解压缩cuDNN7.6.5,然后把解压缩好的cuDNN7.6.5...安装tensorflow与pytorch并验证 安装tensorflow-gpu版本的命令行如下: pip install tensorflow-gpu==2.2.0 –i https://pypi.tuna.tsinghua.edu.cn...踩坑记录: 1.cuDNN8.0.x无法适配tensorflow2.2.0+CUDA10.1的,必须是7.x才行,我重装过!...无法找到,或者无法适配,用正确版本,不行把cudnn64_7.dll拷贝到widnows的system32文件夹下肯定可以的。

    1.2K20

    TensorFlow2.x GPU版安装与CUDA版本选择指南

    本文主题导读: ① TensorFlow2.x GPU版windows安装步骤 ② GPU对应CUDA版本的选择方式 目前Python最新release版本为3.9.0,配合TensorFlow2.../ 下载后可以直接安装,安装完成后我们准备TensorFlow2.x的GPU版本安装,分两步完成,TensorFlow最新版为2.3(这里安装2.2): ① 打开cmd窗口,输入pip...install tensorflow==2.2.0 ② 在cmd窗口输入pip install tensorflow-gpu==2.2.0 上述步骤使用国内的网可能会下载很慢,这里有个小技巧.../simple/ --trusted-hostpypi.tuna.tsinghua.edu.cn 上述两个步骤安装完成后并不能直接使用TensorFlow的GPU版本,运行代码会提示没有cudnn...的dll,所以我们还需要如下三个步骤: ① 下载并安装CUDA10.1,下载地址: https://developer.nvidia.com/cuda-10.1-download-archive-base

    3.1K30

    Pytorch转TensorRT实践

    导语:TensorRT立项之初的名字叫做GPU Inference Engine(简称GIE),是NVIDIA 推出的一款基于CUDA和cudnn的神经网络推断加速引擎,TensorRT现已支持TensorFlow...、Caffe、Mxnet、Pytorch等几乎所有的深度学习框架,将TensorRT和NVIDIA的GPU结合起来,能在几乎所有的框架中进行快速和高效的部署推理。...我的cuda10.2的机器实际需要装cuda10.1的驱动才能运行起来,而cuda10.1只能装TensorRT6。...可以在机器上安装cuda10.1和cuda10.2两个版本,把cuda10.1软链接到/usr/local/cuda,用cuda10.2去完成TRT7的安装。...ONNX是一种开放格式,它可以让我们的算法及模型在不同的框架之间的迁移,Caffe2、PyTorch、TensorFlow、MXNet等主流框架都对ONNX有着不同程度的支持。

    2.7K80

    ubuntu系统使用Anaconda安装tensorflow-gpu环境

    一、环境配置版本信息: 安装tensorflow-gpu,需特别注意tensorflow-gpu、Python、CUDA、cuDNN版本的适配信息,版本不适配会导致tensorflow-gpu安装失败,...该安装教程选择的软件版本信息为:ubuntu18.04 + Anaconda3.5.3.1 + Python3.6.12 + tensorflow-gpu2.2.0 + CUDA10.1 + cuDNN7.6.5...GPU,安装成功则显示true,否则为false tf.test.is_gpu_available() 三、遇到的问题及解决方案: 1、安装完Anaconda后,会有一个默认的base运行环境,能否直接在默认的环境中安装...在默认base运行环境安装tensorflow-gpu 2.2.0的过程中,由于需更新Python的版本,会导致与原本的模块冲突而造成Anaconda崩溃。...2、tf.test.is_gpu_available()的运行结果为false: (1)首先确保tensorflow-gpu、Python、CUDA、cuDNN版本的适配信息,如果不适配,则卸载不适配的版本并重装

    2.1K10

    【2021微信大数据挑战赛】常见问题之TI-ONE平台使用相关

    该指引只测试过安装cuda10.1,其他版本没测试过。但TI-ONE不支持安装Nvidia 驱动,因此大家需要根据现有驱动版本 来看具体可以安装哪些cuda版本。 cudnn环境怎么安装?.../CUDA-ExecutionProvider.html#requirements 在提供的环境下,安装torch 1.7无法使用GPU?...平台提供的Cuda 10.1为什么tf2.1 2.2 2.3无法使用gpu, 只有tf2.0可以?...://tensorflow.google.cn/install/source 使用的默认环境,pytorch 可以正常训练模型,安装环境时出现错误OSError: CUDA_HOME environment...不支持 在notebook上有什么debug代码的方法吗? 不支持debug tensorflow GPU版本 比 CPU 运行时间还长,用64核CPU,训练时看top,只使用了14个核?

    3K230

    干货:TensorFlow1.2~2.1各个GPU版本CUDA和cuDNN对应版本整理

    最近发现很多QQ群和微信群里经常会有人问这么一个问题——“我安装TensorFlow GPU版本怎么总是提示CUDA版本不对或者cuDNN版本不对呢?”...要搭建TensorFlow的GPU版本,首先需要的必备条件就是一块能够支持CUDA的NVIDIA显卡,因为在搭建TensorFlow的GPU版本时,首先需要做的一件事就是安装其基础支持平台CUDA和其机器学习库...cuDNN,然后在此基础上搭建TensorFlow GPU版本。...其次还要了解一下不同的TensorFlow版本所需要对应安装的CUDA和cuDNN版本是多少,因为在TensorFlow的GPU版本安装过程中,如果对应的CUDA版本和cuDNN版本不正确的话,是无法正常使用...GPU来进行模型训练的。

    3.7K10

    基于Tensorflow 1.15的DeepLabV3+_框架的配置和CityScapesScript测试集的语义分割实现

    Cuda 10.0 CUDNN: Cudnn 7.4.1 for Cuda 10.0 Anaconda:Anaconda3-2021.05-Linux-x86_64.sh Pycharm Pigcha 三、Tensorflow-gpu...1.15环境的配置: 其中,Tensorflow,CUDA,CUDNN均选择自己需要的版本来下载。...Tensorflow的安装:https://www.bilibili.com/video/BV1UE411N7gS Tensorflow-CUDA-CUDNN版本对照表: https://www.tensorflow.org...3.DeepLabV3+框架只能在GPU工作情况下运行,因为有部分代码要求GPU参与工作,除非自行修改代码。 4.请在Linux环境下进行环境的配置,Win环境下会产生各种ERROR,无法下手。...: import tensorflow as tf a = tf.test.is_built_with_cuda() # 判断CUDA是否可以用 b = tf.test.is_gpu_available

    69700

    Windows下配置TensorFlow-GPU开发环境经验总结

    但是经过各种Google以及Stack Overflow的浏览,截止到2019-04-27 22:35:14,这些个版本的软件无法搭建起可以让TensorFlow运行起来的环境,一直提示缺少DLL。...他的博客也分析了可能出现的问题是Anaconda3的包没有进行更新,所以,如果单纯直接从官方下载Python安装相应的包,再打基础扩展包可能不会出现问题,也可能是CUDA10.1所需的依赖并没有更新导致的...安装后系统设置与程序测试 检验CUDA与显卡GPU适配工作状况 这一部操作需要VS 2017来配合,来编译CUDA带的示例应用来检测显卡GPU是否适配。...python=3.6 # 切换到TensorFlow专用环境 conda activate tensorflow # 安装tensorflow-gpu稳定版 pip install tensorflow-gpu...在执行时可以启动nvidia-smi来查看TensorFlow是否在GPU中操作: ? 注意事项 如果上述内容有些无法正常执行,请按照图中情况检查环境变量中Path变量的值情况: ?

    1.9K20

    一日多技,技能-Linux-Python 006

    distributed=False, validate=True) 参考:https://github.com/open-mmlab/mmdetection/issues/7901 “2、Cuda11.3 安装 tensorflow1.15...” tensorflow 官网中,tf1.15 只支持cuda10.0(也就是官方给你编译好的包只有基于cuda10.0的),而较新的显卡(比如 安培系列,A2000 A40等),只支持 cuda 11...如果想在 安培系列 显卡上使用 tf1.15,就只有自己重新编译安装 tf(不一定能成功,还贼麻烦),这里给大家分享一种方法:安装:nvidia tensorflow,这是英伟达官方出的一个开源项目,支持在...cuda11 上安装使用 tf1.15,与官方的 TensorFlow 1.15版本兼容。...安装要求: - Ubuntu 20.04 或者更高版本 - 显卡算力大于等于5.2 - 有 GPU 显卡,安装了 cuda11 或者更高版本和对应的 NVIDIA 显卡驱动 - Python 3.8

    81320

    PyTorch VS TensorFlow谁最强?这是标星15000+ Transformers库的运行结果

    大多数情况下,TensorFlow 和 PyTorch 的模型在 GPU 和 CPU 上都得到了非常相似的结果。...CPU 的型号是 Intel Xeon@2.3GHz: 在 GPU 上,使用了带有 12 个 vCPU、40GB 内存和一个 V100 的 GPU(16GB 的 VRAM)的定制 GCP 机器;...实验细节和最佳实践 为了最大化性能,我们进行了更进一步的优化: 上述测量使用的 Intel Xeon CPU 带有 AVX 和 AVX2 的扩展,而 TensorFlow 需要从源代码编译之后才能够利用这些扩展...和带有 GPU 的TensorFlow 的 XLA(自动聚类),后面会详细介绍这两个工具; 我们使用了原生的 Python 模块 timeit 来测量推断时间。...这些结果在速度和内存的使用效率方面得到了提高:大多数内部基准在启用了XLA 后运行速度提高了 1.15 倍。 在启用 XLA 后,我们所有模型性能都得到了提高。

    1.5K10

    深度学习GPU环境配置及建模(Python)

    可以点击prompt打开命令行安装, Python安装依赖也很简单,比如pip install tensorflow 就可以安装好Tensorflow神经网络库。...不同版本的cuda 对应着不同的cudnn版本(我这边cuda10.1对应cudnn7.5的),详情可以从英伟达官网找到具体信息https://developer.nvidia.com/rdp/cudnn-archive...Pytorch 最后,安装Python相关的(支持GPU)的深度学习库,本文建模用的是pytorch(tensorflow、keras等其他库也是可以的) 可以到官网下载相应的pytorch版本,https...://pytorch.org/get-started/locally/ 官网会很友好地给出相应的所选的cuda版本对应的安装命令, 比如我这边cuda10.1对应的命令如下,在anaconda命令行输入就可以安装相关依赖包...gpu或者cpu, 对比使用cpu、gpu资源占用的变化: 同一超参数下模型预测效果上面来看两者差不多,但运行时间CPU是GPU的5倍左右,GPU对深度学习训练的效率提升还是很明显的!

    76810
    领券