文章目录 前言 1、为什么大模型训练需要GPU,而非CPU 2、现在都有哪些合适的GPU适合训练,价格如何 前言 今天偶然看到一篇关于介绍GPU的推文,我们在复现代码以及模型训练过程中,GPU的使用是必不可少的...,那么大模型训练需要的是GPU,而不是CPU呢。...1、为什么大模型训练需要GPU,而非CPU 总的来说,选择GPU而非CPU进行大模型训练的主要原因是因为GPU在并行处理能力、高吞吐量和针对机器学习任务的优化方面的优势。...这些设计特性也让GPU非常适合于训练大型机器学习模型,因为这些模型需要进行大量的数学运算,特别是在训练神经网络时。...优化的库和框架:许多深度学习框架和库,如TensorFlow、PyTorch等,都针对GPU进行了优化,以充分利用其并行处理能力。这些优化包括专门的算法和硬件加速技术,可以显著加快模型训练过程。
如果出错了还请读者指出,本文仅从TensorFlow Lite的文档出发结合我的思考,不做过多深入的代码层面分析。...[图1 原始模型Graph] 图:原始模型Graph 不过从我对文档的理解来看,感觉更像是添加的一种硬件后端(代理我想应该只是调用调用层面,不是底层实现,另外在Hexagon DSP的委托代理部分,文档坦言说...Caffe的MobileNetV1结构是没有reshape2和squeeze2操作的,其实在做端侧框架性能调研时,源自不同训练框架的模型会有不同,结合本身推理框架的底层实现上,对性能可能有不小的影响;...本文对委托代理(Delegate)做一定的解释,因为仅从TensorFlow Lite的文档出发结合我的思考,并介绍了委托代理在TensorFlow Lite中的实现方式,对TensorFlow Lite...注:技术创作101训练营 参考 TensorFlow Lite 代理 | tensorflow.google.cn https://tensorflow.google.cn/lite/performance
一般来说我们会在笔记本或者 PC 端编写模型和训练代码,准备一些数据,配置训练之后会在笔记本或者 PC 端做一个简单验证,如果这些代码数据都 OK 的话,然后真正的训练放在计算力更强的的计算机上面执行,...其实我的 MacBook Pro 上面有一块 N 卡,但是从 TensorFlow 1.2 开始,官方已经不再支持 Mac 上的 GPU 计算了。...虽然可以通过一些 hack 使 TensorFlow 的 Mac 版本继续支持 GPU,但是笔记本上的显卡计算能力还是比较弱,我也不想训练到一半把这块显卡烧了,所以我选择从云服务商那里租用一台 GPU...安装 TensorFlow GPU 版 为了在 GPU 上进行训练,还要安装 TensorFlow 的 GPU 版本(之前在笔记本上面安装的是 CPU版): sudo pip install tensorflow-gpu...一个训练的流程就跑完了,我们配置好了深度学习的软硬件环境,下节课我们开始准备数据,训练自己的模型吧。
最近在研究tensorflow的迁移学习,网上看了不少文章,奈何不是文章写得不清楚就是代码有细节不对无法运行,下面给出使用迁移学习训练自己的图像分类及预测问题全部操作和代码,希望能帮到刚入门的同学。...大家都知道TensorFlow有迁移学习模型,可以将别人训练好的模型用自己的模型上 即不修改bottleneck层之前的参数,只需要训练最后一层全连接层就可以了。...如果你的路径都没有问题,按下回车就可以训练你的模型 ?...img 可以看到训练简单的猫猫狗狗还剩很轻松,正确率100% 然后可以在cmd中使用以下命令打开tensorboard来查看你的模型,xxxx是你的路径 tensorboard--logdir=C:/xxxx...如果想测试一些其他图片,看看模型能不能成功识别可以继续往下看 模型预测 将下面代码粘贴到IDLE中并保存为image_pre.py在tensorflow文件夹中,其中你需要将里面三处的路径都修改为你的路径
在前面的文章【Tensorflow加载预训练模型和保存模型】中介绍了如何保存训练好的模型,已经将预训练好的模型参数加载到当前网络。这些属于常规操作,即预训练的模型与当前网络结构的命名完全一致。...本文介绍一些不常规的操作: 如何只加载部分参数? 如何从两个模型中加载不同部分参数? 当预训练的模型的命名与当前定义的网络中的参数命名不一致时该怎么办?...如果需要从两个不同的预训练模型中加载不同部分参数,例如,网络中的前半部分用一个预训练模型参数,后半部分用另一个预训练模型中的参数,示例代码如下: import tensorflow as tf def...举个例子,例如,预训练的模型所有的参数有个前缀name_1,现在定义的网络结构中的参数以name_2作为前缀。...一致,否则会无法加载参数。
转载自:51CTO技术栈原文地址:使用TensorFlow训练图像分类模型的指南众所周知,人类在很小的时候就学会了识别和标记自己所看到的事物。...下面,我将和您共同探讨计算机视觉(Computer Vision)的一种应用——图像分类,并逐步展示如何使用TensorFlow,在小型图像数据集上进行模型的训练。...让我们将epoch(训练集中每一个样本都参与一次训练)的数量保持为50 ,以实现对模型的快速训练。epoch数值越低,越适合小而简单的数据集。接着,您需要添加隐藏层。...对于其他超参数,我将衰减步骤(decay steps)和衰减率(decay rate)分别选择为2000和0.9。而随着训练的进行,它们可以被用来降低学习率。在此,我选择Adamax作为优化器。...毕竟,过度拟合模型倾向于准确地记住训练集,并且无法泛化那些不可见(unseen)的数据集。输出层是我们网络中的最后一层,它是使用Dense() 方法来定义的。
我们也尝试使用优化后的TensorFlow CPU Parameter Server[3](简称PS)+GPU Worker的模式进行训练,但只对复杂模型有一定的收益。...其它维度资源并不是很充足:相比GPU算力的提升速度,单机的CPU、网络带宽的增长速度较慢,如果遇到这两类资源负载较重的模型,将无法充分发挥GPU的能力,GPU服务器相比CPU服务器的性价比不会太高。...但在推荐系统场景中,由于模型相对没有那么复杂,远端读取的样本量大,特征处理耗费CPU多,给单机CPU和网络带来较大的压力。同时面对模型参数量大的情况,单机的GPU显存是无法放下的。...: 图12 CPU/GPU训练吞吐对比 可以看到,我们优化后的TensorFlow GPU架构训练吞吐,是原生TensorFlow GPU的3倍以上,是优化后TensorFlow CPU场景的4倍以上...从功能和完备性上支持TensorFlow的各类训练接口(Train/Evaluate/Rredict等),支持CPU和GPU模型相互导入。
在这种情况下可以看出,训练 Xception 模型时,TPU 比 CPU 快了约 100 倍,比 GPU 快了约 3.5 倍,这是因为 TPU 处理批大小很大的数据时效率更高。...所以,与之前的实验相比,TPU 训练 Xception 模型的速度比 GPU 快 7 倍。...图 3:用 CPU、GPU 和 TPU 训练 Xception 模型(12 个 epoch)所需时间对比。...如下图 4 所示,模型训练的加速情况也与模型类别有关,Xception 和 Vgg16 就比 ResNet50 表现更好。在这种边界很大的情况下,模型训练速度是 TPU 唯一超过 GPU 的地方。...例如,用像 RAPIDS.ai 这样的 GPU 加速库训练梯度提升模型,再用像 tf.keras 这样的 TPU 加速库训练深度学习模型,比较二者的训练时间,这也是很有意思的。
,你们是否在为没有GPU,网络训练耗时而苦恼。...普通意义上来讲,训练深度网络时,GPU比CPU快40倍左右,也就是说GPU一个小时内可以完成CPU训练两天的量。...但是GPU不菲的价格让人望而却步,看完这篇文章就可以随心所欲的拥有自己的GPU。...Colaboratory 可免费使用,而且其后端有一个K80 GPU支持。一句话,就是给买不起GPU的小伙伴提供一个免费GPU训练平台。...就可以运行自己的代码了,如果想要通过浏览器下载自己的模型或者其他文件,可以运行以下代码: from google.colab import files file.download("path
该模型的灵感来自于Alec Radford等人提出的CLIP方法,其思想是联合训练一个视觉编码器和一个文本编码器,将图像及其标题的表示投射到同一个嵌入空间,从而使标题嵌入位于其描述的图像的嵌入附近。...这个例子需要TensorFlow 2.4或更高版本。此外,BERT模型需要TensorFlow Hub和TensorFlow Text,AdamW优化器需要TensorFlow Addons。...Number of images: 82783 处理并将数据保存到TFRecord文件中 你可以改变sample_size参数去控制将用于训练双编码器模型的多对图像-标题。...V100 GPU 加速器训练 60000 个图像标题对的模型,批量大小为 256 个,每个 epoch 需要 12 分钟左右。...查阅顶部匹配图片的路径,将其显示出来。 值得注意的是在训练完双编码器后,将只使用微调后的visual_encoder和text_encoder模型,而dual_encoder模型将被丢弃。
本文主要讲DeeplabV3+语义分割模型的tensorflow C接口部署,不涉及到模型的训练过程,训练过程可以参考: https://github.com/tensorflow/models/tree...官方提供了PASCAL VOC 2012,Cityscapes,ADE20K不同数据集上预训练好的模型,同时还有基于ImageNet预训练好的不同backbone网络, 包括mobilenetv2,xception...本文不涉及tensorflow C版本的编译,只是讲解如何通过API调用预训练模型进行前向推理预测,模型的导出文件为: frozen_inference_graph.pb Mat转Tensor 在tensorflow...资源设置 我们在执行推理的过程中,可能并不希望模型使用全部的GPU资源,又或者希望不同模型使用不同的GPU资源,这个时候需要设置。...实例演示 这是一个自己训练的用于分割细菌的模型,效果如下图。 ?
通过Google发布的tensorflowjs,我们可以将训练好的模型部署到任何一个支持静态页的web服务器上,不需要任何后台服务即可运行tensorflow,部署过程非常简单。...安装tensorflowjs python万金油安装法 pip install tensorflowjs 转换模型 1 tensorflowjs_converter --input_format=keras.../models/modelforjs 后面2个参数第1个是保存好的tf模型路径,第2个参数是输出路径,会生成一个modelforjs目录,里面包含一个model.json文件和二进制数据文件 部署到Web...服务 把生成好的modelforjs拷贝到web服务上,同时引用这个jstensorflow/tfjs/dist/tf.min.js..."> 调用模型 123 var model = await tf.loadLayersModel('modelforjs/model.json'); //加载模型var predict
,这里包含VGG16/19、Xception、Inception-V3、Inception-Resnet-V2等经典模型 要点概述 支持多个单模型进行集成,可选多种集成方式 支持多种集成方式间的任意组合和自动择优...支持间断训练时权重文件的择优选择 支持VGG16、VGG19、Resnet50、Inception-V3、Xception、Inception-Resnet-V3模型 imgaug 图片数据增强库替换...训练任务交给GPU去做,新添加的imgaug图片处理方式之后,一个Epoch在1050Ti上耗时90mins+,排查发现大部分时间都在进行图片数据增强处理,于是将该部分的处理替换为多进程方式。...提高2~5个百分点 模型选择很重要!!! 糟糕的模型训练几天几夜,可能赶不上优势模型训练几个epoch。VGG16=>Xception提高5~8个百分点 Loss降不下去时尝试调低LR!!!...尽可能使用Tensorflow提供的Tensorboard可视化工具,方便从宏观把控训练过程。 适度过拟合是良性的!!!
作者: 梦里茶 如果觉得我的工作对你有帮助,就点个star吧 关于 这是百度举办的一个关于狗的细粒度分类比赛,比赛链接: http://js.baidu.com/ 框架 Keras Tensorflow...Keras实现 去掉Xception最后用于imagenet分类的全连接层,获取图像深度特征 输入两张图片,可能属于相同类也可能属于不同类 根据特征和标签进行多分类训练 同时以两图是否属于同一类作为二分类标签训练...冻结Xception的卷积层,采用ADMM训练多分类和二分类模型....解冻Xception卷积层的最后两个block(总共有12个block,最后两个block从Xception的105层开始)继续使用SGD训练 去掉数据增广,再训练直至收敛 代码 单一Xception模型..., 混合模型: 0.211 Xception, 混合模型,最后去掉数据增广再训练: 0.2045 如果发现代码里有bug,麻烦开个issue告诉我或者来个PR修复一下,万分感谢!
模型的训练主要有内置fit方法、内置tran_on_batch方法、自定义训练循环。 注:fit_generator方法在tf.keras中不推荐使用,其功能已经被fit包含。...import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras import * #...并且可以通过设置回调函数实现对训练过程的复杂控制逻辑。...val_sparse_top_k_categorical_accuracy: 0.7974 二,内置train_on_batch方法 该内置方法相比较fit方法更加灵活,可以不通过回调函数而直接在批次层次上更加精细地控制训练的过程...自定义训练循环无需编译模型,直接利用优化器根据损失函数反向传播迭代参数,拥有最高的灵活性。
基于transformers的语言模型在许多不同的自然语言处理(NLP)基准任务测试上都取得了很大进展。迁移学习与大规模的transformers语言模型训练的结合正在成为现代NLP的一个标准。...然后,我们将演示预训练BERT模型在文本分类任务的微调过程,这里运用的是TensorFlow 2.0+的 Keras API。 文本分类–问题及公式 一般来说, 分类是确定新样本的类别问题。...简单的 RNN 存在梯度消失/梯度爆炸问题,所以无法对较长的上下文依赖关系进行建模。...所以保存预训练的模型,然后微调一个特定的数据集非常有用。与预训练不同,微调不需要太多的计算能力,即使在单个 GPU 上,也可以在几个小时内完成微调过程。...可以看到,训练集正确率96.88%,验证集正确率93.21%,测试集上正确率94.37%。 ? ? 由于数据量较大,训练时间长,建议在GPU下运行,或者到colab去跑。
其中,H100等专业级GPU因其强大的计算能力和专为模型训练优化的架构而备受瞩目。然而,这些专业级GPU的价格通常非常高昂。...与此同时,市面上也有大量图形显卡,如GTX系列和RTX系列,这些显卡在参数上看似与专业级GPU相差不大,但价格却相差巨大。那么,在模型训练方面,图形显卡和专业级GPU到底有哪些差异呢?...软件支持 图形显卡 驱动和库:通常只支持基础的CUDA和cuDNN库。 优化:缺乏针对模型训练的软件优化。 专业级GPU 驱动和库:全面支持CUDA、cuDNN以及其他深度学习库。...优化:专门针对模型训练进行了软件层面的优化。 成本 图形显卡通常价格更低,但在模型训练方面,其性价比通常不如专业级GPU。...总结 虽然图形显卡在价格上具有明显优势,但在模型训练方面,专业级GPU由于其强大的计算能力、优化的软件支持和专为大规模数据处理设计的硬件架构,通常能提供更高的性能和效率。
几个月前,我写了一篇关于如何使用已经训练好的卷积(预训练)神经网络模型(特别是VGG16)对图像进行分类的教程,这些已训练好的模型是用Python和Keras深度学习库对ImageNet数据集进行训练得到的...不过,在预训练的模型(VGG16、VGG19、ResNet50、Inception V3 与 Xception)完全集成到Keras库之前(不需要克隆单独的备份),我的教程已经发布了,通过下面链接可以查看集成后的模型地址...我打算写一个新的教程,演示怎么使用这些最先进的模型。...VGGNet、ResNet、Inception与Xception的分类结果 这篇博文中的所有示例都使用Keras>=2.0和TensorFlow后端。...如果使用TensorFlow,请确保使用版本>=1.0,否则将遇到错误。我也用Theano后端测试了这个脚本,并确认可以使用Theano。
例如,当谷歌开发最新的图像分类模型Xception时,他们训练了两个版本:一个是针对ImageNet数据集的(1400万张图像),另一个是针对JFT数据集的(3.5亿张图像)。...但是,现在已经发布了预先训练好的Xception模型,团队可以更快地调整他们自己的版本。 例如,伊利诺伊大学和阿贡国家实验室的一个团队最近训练了一个模型,将星系的图像分类为螺旋形或椭圆形: ?...尽管只有35000张标记图像的数据集,他们还是能够使用NVIDIA gpu在8分钟内对Xception进行处理。...你不再需要风险资本来训练模型了 当谷歌用几个月时间一次在60个GPU上训练他们的Xception模型,他们可能并不太在意成本。...机器学习工程师正在使用开源模型和迁移学习来构建产品,而不是用PyTorch或TensorFlow从头开始构建模型,这意味着全新一代的以ML为基础的软件即将诞生。
深度网络最后层输出的 feature map 虽然能够编码丰富的语义信息,但由于 pooling 和不同步长的卷积处理,会导致物体边界信息丢失. 且,计算 GPU 显存占用较多....编码-解码模型编码计算速度快,且解码能够逐步重构更好的物体边界. DeepLabV3 的输出能够编码丰富的语义信息,其利用 atrous 卷积来控制编码输出的特征分辨率,取决于计算资源....由于对应的 low-level 特征往往包含较多的 channels(如256, 512),可能会超过输出编码特征(这里输出 256 channels) 导致训练困难,故在连接(Concatenation...output_stride=8的编码模块输出,精度更高,但计算复杂度增加. 2. Modified Aligned Xception Xception 模型 已经在图像分类上取得了快速计算....改进的 Xception 结构如图: ? 3.
领取专属 10元无门槛券
手把手带您无忧上云