首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【MATLAB】基本绘图 ( 句柄值 | 对象句柄值获取 | 创建对象时获取句柄值 | 函数获取句柄值 | 获取 设置 对象属性 | 获取对象属性 )

文章目录 一、对象句柄值获取 1、句柄值 2、创建对象时获取句柄值 3、函数获取句柄值 4、获取 / 设置 对象属性 二、获取对象属性 1、获取 线 对象属性 2、获取 坐标轴 对象属性 一、对象句柄值获取...---- 1、句柄值 对象的句柄值 , 类似于编程时的引用 , 将对象的句柄值赋值给变量后 , 该变量就可以代表指定的绘图对象 ; 对象的 Handle 标识 ; 2、创建对象时获取句柄值 创建对象时获取图形对象句柄值...: 创建对象时 , 使用变量接收该对象 , 下面的代码就是使用 line_sin 变量获取 线 对象的句柄值 ; line_sin = plot(x, y) 3、函数获取句柄值 使用函数获取对象句柄值...: 下面的函数是获取相关对象句柄值的函数 ; gca : 获取当前坐标轴的句柄值 ; gcf : 获取当前图形的句柄值 ; allchild : 查找特定对象的所有子对象的句柄 ; ancestor...: 查找特定对象的父容器的句柄值 ; delete : 删除对象 ; findall : 找到所有的图形对象 ; 4、获取 / 设置 对象属性 获取某个对象的属性 : 使用 get 函数 , 可以获取某个对象的属性

6.6K30

用TensorFlow的LinearDNNRegrressor预测数据

思路整理 磨刀时间 tensorflow关于回归的文档教程 udacity的Titanic实例 砍柴时间 python读取excel表格的数据 尝试一维输入预测输出 尝试五维输入预测输出 开始磨刀 读TensorFlow...磨刀获得的备选方案 tf.contrib.learn tf.contrib.learn是TensorFlow的高级API,定义了很多常用模型,可以简化编码。...2、习惯了其他语言,总是关心返回值,感觉python好奇怪,看不出是什么类型,填参数时候总遇到各种问题,只好不停地打印类型……pd.read_csv取回来的是个DataFrame。...精度如何评估 我不关心loss的值,我只希望它能输出一个正确率,分数或小数都可以,但是我只能用最笨的办法,把输出和真实的输出用程序比一遍,但是我似乎发现evaluate有直接输出的功能,但是不会用,希望会的同学指点下...))) 这个方法得到一个,我想看看它的值有哪些,得把它转成list,是这么麻烦吗?

47610
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数组(获取最值)

    数组的常见操作(获取最值) 1.获取最值需要进行比较,每一次比较都会有一个较大的值,因为该值不确定,通过一个变量进行存储 2.让数组中的每一个元素都和这个变量中的值进行比较,如果大于了变量中的值,就用该变量记录较大值...3.当所有的元素都比较完成,那么该变量中存储的就是数组中的最大值 初始化变量为第一个元素 初始化变量为索引,这个可以获取最大值或者最大值的脚标 java版: public class ArrayDemo...>max){ max=arr[x]; } } return max; } /** * 获取最大值...,这个可以获取最大值或者最大值的脚标 * @param arr * @return */ public static int getMax2(int[] arr){...,这个可以获取最大值或者最大值的脚标 * @param arr * @return */ public static function getMax2($arr){

    1.5K20

    用TensorFlow的LinearDNNRegrressor预测数据

    思路整理 磨刀时间 tensorflow关于回归的文档教程 udacity的Titanic实例 砍柴时间 python读取excel表格的数据 尝试一维输入预测输出 尝试五维输入预测输出 开始磨刀 读TensorFlow...磨刀获得的备选方案 tf.contrib.learn tf.contrib.learn是TensorFlow的高级API,定义了很多常用模型,可以简化编码。...2、习惯了其他语言,总是关心返回值,感觉python好奇怪,看不出是什么类型,填参数时候总遇到各种问题,只好不停地打印类型……pd.read_csv取回来的是个DataFrame。...- 精度如何评估 我不关心loss的值,我只希望它能输出一个正确率,分数或小数都可以,但是我只能用最笨的办法,把输出和真实的输出用程序比一遍,但是我似乎发现evaluate有直接输出的功能,但是不会用...))) 这个方法得到一个generator,我想看看它的值有哪些,得把它转成list,是这么麻烦吗?

    59640

    TensorFlow中的Nan值的陷阱

    之前在TensorFlow中实现不同的神经网络,作为新手,发现经常会出现计算的loss中,出现Nan值的情况,总的来说,TensorFlow中出现Nan值的情况有两种,一种是在loss中计算后得到了Nan...01 Loss计算中出现Nan值 在搜索以后,找到StackOverflow上找到大致的一个解决办法(原文地址:这里),大致的解决办法就是,在出现Nan值的loss中一般是使用的TensorFlow的log...函数,然后计算得到的Nan,一般是输入的值中出现了负数值或者0值,在TensorFlow的官网上的教程中,使用其调试器调试Nan值的出现,也是查到了计算log的传参为0;而解决的办法也很简单,假设传参给...不过需要注意的是,在TensorFlow中,tf.nn.sigmoid函数,在输出的参数非常大,或者非常小的情况下,会给出边界值1或者0的输出,这就意味着,改造神经网络的过程,并不只是最后一层输出层的激活函数...举例说明就是TensorFlow的官网给的教程,其输出层使用的是softmax激活函数,其数值在[0,1],这在设计的时候,基本就确定了会出现Nan值的情况,只是发生的时间罢了。

    3.2K50

    自创数据集,使用TensorFlow预测股票入门

    不然的话我们就使用了未来的时序预测信息,这常常令预测度量偏向于正向。 TensorFlow 简介 TensorFlow 是一个十分优秀的框架,目前是深度学习和神经网络方面用户最多的框架。...这两个值流过图形在到达正方形结点时被执行相加任务,相加的结果被储存在变量 c 中。实际上,a、b 和 c 可以被看作占位符,任何输入到 a 和 b 的值都将会相加到 c。...MSE 计算预测值与目标值之间的平均平方误差。...在输出层,TensorFlow 将会比较当前批量的模型预测和实际观察目标 Y。然后,TensorFlow 会进行优化,使用选择的学习方案更新网络的参数。...当训练达到了 epoch 的最大值或其它的用户自定义的停止标准的时候,网络的训练就会停止。

    1.2K70

    基于tensorflow的LSTM 时间序列预测模型

    遗忘门类似于一个过滤器,决定上一个时间步的信元状态C能否通过 输入门:负责根据输入值和遗忘门的输出,来更新信元状态C 输出们:更新隐藏单元的值 当然,LSTM的形式也是存在很多变式的,不同的变式在大部分任务上效果都差不多...,在一些特殊任务上,一些变式要优于标准的LSTM 利用LSTM进行时间序列预测 一般在时间序列预测上,常用的方法主要有ARIMA之类的统计分析,机器学习中经典的回归分析等 统计分析中(如ARIMA),将时间序列分为三个部分...tensorflow中已经为我们准备好了LSTM层的接口,根据需要配置即可。...,输出序列是t > t+23;也可以输入序列为t-24之前的序列来预测t时候的值,进行24次预测;也可以用t-1之前的序列要预测t时,每次预测结果再代入输入中预测t时刻之后的值。...输出序列的向量维度 # CELL_SIZE:LSTM神经层的细胞数,也是LSTM层的输入和输出维度(这两个维度相同),也即为LSTMCell中的num_units参数; # LEARNING_RATE:tensorflow

    1.8K30

    分别用sklearn和tensorflow做房价预测

    本篇是后面用tensorflow做回归时的一个参照,忍不住要说的是sklearn真是简单好用,要不是他没有卷积cnn等时髦模型,真是不想用其他家的了。...boston房价这个数据也就506行,13个特征(列),对cnn来说实在太少了,没个10万行数据,都看不出它的优势; 另外cnn虽然不用人工特征优选,但是搭建它的拓扑结构实在是个难搞的事,最让人炸裂的是tensorflow...article/details/52979206 周莫烦的系列视频教程,跪地推荐 结果是这样的: 上文中只训练了200次,其实正常来说都是1000次起的,无奈手里只有小mac mini,显卡是N卡的同学可以用tensorflow...RNN之递归神经网路LSTM 在tensorflow里RNN才是做回归计算的正规军,其中LSTM更是让人工智能有了记忆,如果cnn最适合做的是图像识别,那么LSTM就是视频识别。...网上的教程多是用正余弦数据在做预测,输入输出都是一维,我这用波士顿房价,输入是13个特征! 注意与前面两个模型不同的是,没有用train_test_split把训练数据分割,而是用的时序数据。

    3.3K30
    领券