使用自定义模型类从头开始训练线性回归,比较PyTorch 1.x和TensorFlow 2.x之间的自动差异和动态模型子类化方法。
最近发布的PerceptiLabs 0.11已迅速成为TensorFlow的GUI和可视API。PerceptiLabs基于复杂的可视ML建模编辑器构建,您可以在其中拖放组件并将它们连接在一起以形成模型,从而自动创建基础的TensorFlow代码。现在就试试。
对于深度学习框架的使用,整个人工智能社区大体可以分为两大阵营:TensorFlow 和 PyTorch。有观点认为,PyTorch 更适合研究领域,而实际的工业应用可能更偏向于 TensorFlow。PyTorch 具有用户友好的 API 和对 Python 生态的良好支持,更适合学界。而 TensorFlow 因为用户惯性和对工业生产环境的支持,更适合业界。
来源:otoro 编译:weakish 编者按:Google Brain机器学习开发者hardmu使用TensorFlow,基于CPPN网络生成了许多有趣的高分辨率抽象艺术图片。一起来看看他是怎么做的吧。 钻石恒久远 本文尝试使用TensorFlow探索复合模式生成网络(Compositional pattern-producing networks)。相关代码放在github上。乍看起来,用TensorFlow实现CPPN是高射炮打蚊子,因为用numpy就可以实现CPPN。不过,用TensorFlow
前不久,Keras的爸爸François Chollet在GitHub上发起了一个提议:
鸟类启发我们飞翔,牛蒡植物启发了尼龙绳,大自然也激发了许多其他发明。从逻辑上看,大脑是如何构建智能机器的灵感。这是启发人工神经网络(ANN)的关键思想。然而,尽管飞机受到鸟类的启发,但它们不必拍动翅膀。同样的,ANN 逐渐变得与他们的生物表兄弟有很大的不同。一些研究者甚至争辩说,我们应该完全放弃生物类比(例如,通过说“单位”而不是“神经元”),以免我们把我们的创造力限制在生物学的系统上。
关键词:Python,tensorflow,深度学习,卷积神经网络 正文如下: 前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把其PPT的参考学习资料给了我们, 这是codelabs上的教程:《TensorFlow and deep learning,without a PhD》 https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0 当然需要安装python,教程推荐使用pytho
9月底轰动业界的史上最强GAN,也就是最高动用512个TPU训练的BigGAN,Demo已经正式放出!
当然,你也可以不让它画猫,改成画狗。只要你设定了一个绘画的目标,之后随便画一笔,AI就能脑补出余下的画面。
机器学习作为一个领域,正在以极快的速度发展。Github是全世界都在关注的白板。高质量的代码定期发布在无限的智慧板上。
该项目构建了世界上最简单的人脸识别工具,我们可以直接通过 Pyhon API 或者命令行来调用人脸识别程序。该工具使用了dlib 最先进的人脸识别算法,该算法在 Wild 人脸数据集上取得了 99.38% 的准确率。
本文总结
可微分渲染是一个新颖的领域,可帮助计算3D对象的梯度并允许它们在图像中传播,而无需3D数据收集和注释。计算机图形学中的渲染生成3D场景,该场景由几何形状,材质,场景光和相机属性定义。渲染是一个复杂的过程。它的区别不能唯一地定义;因此不可能直接集成到神经网络中。可微分渲染(DR)构成了一系列技术,这些技术通过获取渲染过程的有用梯度来解决端到端优化的这种集成问题。
前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把其PPT的参考学习资料给了我们, 这是codelabs上的教程:《TensorFlow and deep learning,without a PhD》 https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0 当然需要安装python,教程推荐使用python3。 好多专业词太难译了,查了下,大家有些都是不译的。 比如:dropou
使用 Vega,我们能够以JSON格式描述可视化的视觉外观和交互行为,并使用 Canvas 或 SVG 生成基于 Web 的视图。
机器学习领域正在飞速发展。GitHub 是一张举世瞩目的白板,高质量的代码通常被发布在这张充满智慧的无限大白板上。
现在人像分割技术就像当初的人脸检测算法一样,称为广泛使用的基础算法。今天本文介绍的人像留色其实就是三年前某 AI 巨头利用 video 分割技术展示的应用场景:人体区域保留彩色,人体区域之外灰度化。所以人像留色的关键技术在于高精度高性能的分割算法。
今天本文介绍的人像留色其实就是三年前某 AI 巨头利用 video 分割技术展示的应用场景:人体区域保留彩色,人体区域之外灰度化。所以人像留色的关键技术在于高精度高性能的分割算法。
雷锋网AI 科技评论按,AZohar Komarovsky,Taboola 算法工程师,致力于研究推荐系统相关的机器学习应用程序。不久前他分享了最近一年关于多任务深度学习的研究经验。雷锋网 AI 科技评论编译整理如下:
本章中,将会利用TensorFlow实现一个简单的模型:线性回归。通过本示例,我会分析一些代码基础及说明如何在学习过程中调用各种重要组件,比如cost function或梯度下降算法。 变量间关系的模型 线性回归是用来度量变量间关系的统计技术。有意思的是该算法的实现并不复杂,但可以适用于很多情形。正是因为这些原因,我非常乐意以线性回归作为开始学习TensorFlow的开始。 请记住,不管在两个变量(简单回归)或多个变量(多元回归)情形下,线性回归都是对一个依赖变量,多个独立变量xi,一个随机值b间的关系建模
对于程序员而言,Github无疑是一个巨大的宝库,其全球注册用户超过3100万,仓库数量突破一个亿。(2018年年底统计数据)
用于训练神经网络的最受欢迎的优化算法有哪些?如何比较它们?本文试图用一个卷积神经网络(CNN)来回答这些问题。 随机梯度下降(SGD) SGD通过选取大小(m)的子集或小批量数据,更新在梯度(g)的反
据说,当你在卢浮宫博物馆踱步游览的时候,你会感到油画中的蒙娜丽莎视线随你而动。这就是《蒙娜丽莎》这幅画的神奇之处。出于好玩,TensorFlow软件工程师Emily Xie最近开发了一个互动数字肖像,只需要浏览器和摄像头,你就能把会动的蒙娜丽莎带回家了!
对于学习数据科学的同学来说,从头开始实现神经网络,会让你理解很多有趣的东西。但是,我并不认为在真实数据集上构建深度学习模型是个明智的做法,除非你有数天或数周的时间来等待模型的构建。那么对于绝大部分无法获得无限资源的人来说,使用易于使用的开源深度学习框架,我们可以立即实现如卷积神经网络这样的复杂模型。
该期我们将从DNN入手开始学习TensorFlow方面的相关知识。学习的路上,我们多多交流,共同进步。本期主要内容如下: 从生物学到人工神经网络 训练多层感知机 训练DNN 文末附本期代码关键字,回复关键字即可下载。 ---- 一. 从生物学到人工神经网络 鸟类启发我们飞翔,牛蒡植物启发魔术贴,而大自然激发了许多其他发明。 那么,大脑的体系结构,是激发人工神经网络(ANN)的关键思想。人工神经网络是深度学习的核心。 1.1 从生物到人工神经元 在讨论人造神经元之前,让我们快速看一下生物神经元,如下图所示。它
正如吴恩达所言,当代机器学习算法的成功很大程度上是由于模型和数据集大小的增加,在大规模数据下进行分布式训练也逐渐变得普遍,而如何在大规模数据、大模型的情况下进行计算,还是一个挑战。
【导读】主题链路知识是我们专知的核心功能之一,为用户提供AI领域系统性的知识学习服务,一站式学习人工智能的知识,包含人工智能( 机器学习、自然语言处理、计算机视觉等)、大数据、编程语言、系统架构。使用请访问专知 进行主题搜索查看 - 桌面电脑访问www.zhuanzhi.ai, 手机端访问www.zhuanzhi.ai 或关注微信公众号后台回复" 专知"进入专知,搜索主题查看。继Pytorch教程后,我们推出面向Java程序员的深度学习教程DeepLearning4J。Deeplearning4j的案例和
现在,Google和OpenAI的一场合作,以图像分类神经网络为例,我们揭开了神经网络黑箱的一角。
JAX是机器学习框架领域的新生力量,尽管这个Tensorflow的竞争对手从2018年末开就已经出现,但直到最近,JAX才开始在更广泛的机器学习研究领域中获得关注。
自然语言处理(NLP)是信息时代最重要的技术之一。理解复杂的语言话语也是人工智能的重要组成部分。 NLP 的应用无处不在,因为人与人之间大部分的沟通都需要语言:网络搜索,广告,电子邮件,客户服务,语言翻译,放射报告等。
Tensorflow是实验深度学习算法的绝佳工具。但是要利用深度学习的力量,需要利用计算能力和良好的工程技术。最终需要使用多个GPU,甚至可能需要多个流程才能实现目标。建议先阅读TensorFlow关于GPU 的官方教程。
MaskRCNN 是何恺明基于以往的 faster rcnn 架构提出的新的卷积网络,一举完成了 object instance segmentation。该方法在有效地目标的同时完成了高质量的语义分割。文章的主要思路就是把原有的 Faster-RCNN 进行扩展,添加一个分支使用现有的检测对目标进行并行预测。
文中蓝色字体为链接,部分外部链接无法从文章内部直接访问,请点击文末阅读原文以访问链接。
作者:Prerna Khanna、Tanmay Srivastava、Kanishk Jeet
本文搜集整理了Jupyter Notebook中TensorFlow和PyTorch的各种深度学习架构,模型和技巧,内容非常丰富,适用于Python 3.7,适合当做工具书。
MaskRCNN是何凯明基于以往的faster rcnn架构提出的新的卷积网络,一举完成了object instance segmentation. 该方法在有效地目标的同时完成了高质量的语义分割。 文章的主要思路就是把原有的Faster-RCNN进行扩展,添加一个分支使用现有的检测对目标进行并行预测。
编译整合:Nancyzxll 审稿:张远园 Aileen ◆ ◆ ◆ 引言 小白学数据系列的读者们,大家好久不见。谷歌最近推出了一个神经网络可视化教学平台“游乐场”Tensorflow Play
Facebook聊天框里出道的灰色短毛猫Pusheen,是柔软的微胖界宠儿,中文名字叫胖吉。
第9章 启动并运行TensorFlow 来源:ApacheCN《Sklearn 与 TensorFlow 机器学习实用指南》翻译项目 译者:@akonwang @WilsonQu 校对:@Lis
转置卷积又叫反卷积、逆卷积。不过转置卷积是目前最为正规和主流的名称,因为这个名称更加贴切的描述了卷积的计算过程,而其他的名字容易造成误导。在主流的深度学习框架中,如TensorFlow,Pytorch,Keras中的函数名都是conv_transpose。所以学习转置卷积之前,我们一定要弄清楚标准名称,遇到他人说反卷积、逆卷积也要帮其纠正,让不正确的命名尽早的淹没在历史的长河中。
本文主要介绍了计算机视觉领域中的卷积神经网络在图像分类、物体检测、语义分割和人脸识别等任务中的应用。通过详细的实战案例,展示了如何使用卷积神经网络解决实际问题。同时,本文还介绍了如何使用 TensorFlow 实现卷积神经网络,包括数据读取、网络结构、训练和评估等步骤。
今天为大家介绍可应用于Tensorflow代码的VeriTensor代码方法,以使调试起来更加有效。
如果你想入门深度学习,这是个难得的好机会。软件、样例、课程,还有配套教材的开源版本,全都免费提供。
领取专属 10元无门槛券
手把手带您无忧上云