首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TensorFlow中的Nan值的陷阱

之前在TensorFlow中实现不同的神经网络,作为新手,发现经常会出现计算的loss中,出现Nan值的情况,总的来说,TensorFlow中出现Nan值的情况有两种,一种是在loss中计算后得到了Nan...值,另一种是在更新网络权重等等数据的时候出现了Nan值,本文接下来,首先解决计算loss中得到Nan值的问题,随后介绍更新网络时,出现Nan值的情况。...函数,然后计算得到的Nan,一般是输入的值中出现了负数值或者0值,在TensorFlow的官网上的教程中,使用其调试器调试Nan值的出现,也是查到了计算log的传参为0;而解决的办法也很简单,假设传参给...log的参数为y,那么在调用log前,进行一次数值剪切,修改调用如下: loss = tf.log(tf.clip_by_value(y,1e-8,1.0)) 这样,y的最小值为0的情况就被替换成了一个极小值...不过需要注意的是,在TensorFlow中,tf.nn.sigmoid函数,在输出的参数非常大,或者非常小的情况下,会给出边界值1或者0的输出,这就意味着,改造神经网络的过程,并不只是最后一层输出层的激活函数

3.2K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas中替换值的简单方法

    为此,Pandas 提供了多种方法,您可以使用这些方法来处理 DataFrame 中所有数据类型的列。 在这篇文章中,让我们具体看看在 DataFrame 中的列中替换值和子字符串。...当您想替换列中的每个值或只想编辑值的一部分时,这会派上用场。 如果您想继续,请在此处下载数据集并加载下面的代码。...Pandas 中的 replace 方法允许您在 DataFrame 中的指定系列中搜索值,以查找随后可以更改的值或子字符串。...但是,在想要将不同的值更改为不同的替换值的情况下,不必多次调用 replace 方法。相反,可以简单地传递一个字典,其中键是要搜索的列值,而值是要替换原始值的内容。下面是一个简单的例子。...首先,如果有多个想要匹配的正则表达式,可以在列表中定义它们,并将其作为关键字参数传递给 replace 方法。然后,只需要显式传递另一个关键字参数值来定义想要的替换值。

    5.5K30

    mysql查询字段中带空格的值的sql语句,并替换

    (自己写的这四行)查询带有空格值的数据:SELECT * FROM 表名 WHERE 字段名 like ‘% %’; 去掉左边空格 update tb set col=ltrim(col); 去掉右边空格...set col=rtrim(col); (1)mysql replace 函数 语法:replace(object,search,replace) 意思:把object中出现search的全部替换为...replace 代码如下 复制代码 update `news` set `content`=replace(`content`,’ ‘,”);//清除news表中content字段中的空格 这样就可以直接用...,如果数据库中的这个字段的值含有空格(字符串内部,非首尾),或者我们查询的字符串中间有空格,而字段中没有空格。...这样就可以正确的进行匹配了,如果不希望给mysql太多压力,条件部分的对空格的处理我们可以在程序中实现。

    9.4K20

    Go 100 mistakes之如何正确设置枚举值中的零值

    << (10 * 1) ③ 在这一行,iota等于2,本行将会重复上一行的表达式,因此 MB 被设置成了 1 << (10 * 2) Go中Unknow 值的处理 既然我们已经理解了在Go中处理枚举值的原理...然而,在Request结构体中的Weekday字段值将会被设置成一个int类型的默认值:0值。因此,就像是在上次请求中的Monday。...那我们应该如何区分请求中是传递的Monday还是就没有传递Weekday字段呢?这个问题和我们定义Weekday枚举的方式有关。实际上,Unknown是枚举值的最后一个值。因此,它的值应该等于7....为了解决该问题,处理一个unknown的枚举值的最好的实践方法是将它设置成0(int类型的零值)。...根据经验,枚举的未知值应该设置为枚举类型的零值。这样,我们就可以区分出显示值和缺失值了。

    3.8K10

    Python人工智能 | 四.TensorFlow基础之Session、变量、传入值和激励函数

    Tensor(张量)是tensorflow框架使用的基本数据结构,张量即多维数组,在python中可以理解为嵌套的多维列表。...TensorFlow中涉及的运算都要放在图中,而图的运行只发生在会话(session)中。开启会话后,就可以用数据去填充节点,并进行运算;关闭会话则不能进行计算。...在TensorFlow中,使用tf.Variable来创建变量。变量(Variable)是特殊的张量,它的值可以是一个任何类型和形状的张量。...上述示例在计算图中引入了张量,以常量或变量的形式存储,Tensorflow中还提供了另外一种机制,即先定义占位符,等到真正执行的时候再用具体值去填充或更新占位符的值。...对于隐藏层,我们可以使用relu、tanh、softplus等非线性关系;对于分类问题,我们可以使用sigmoid(值越小越接近于0,值越大越接近于1)、softmax函数,对每个类求概率,最后以最大的概率作为结果

    64610

    Python人工智能在贪吃蛇游戏中的运用与探索(中)

    「什么叫张量(tensor)」 首先声明这里我们指的张量(tensor )是「Tensorflow」里最基本的数据结构.它是tensorflow最重要的概念,顾名思义,flow是流动的意思,tensorflow...我们也会有三维张量、四维张量以及五维张量等等。零维张量就是一个具体的数字。 ? 张量的基本概念 下图是全国某些城市的疫情图,它是一个三维的张量。 ?...在张量的概念中,他们都是一维张量。 那么,张量的维数和形状怎么看呢?...比如(2,3)就表示为一维有3个元素,二维两个元素的二维张量。 「tensorflow中使用张量的优势」 用tensorflow 搭建的神经网络,输入层和输出层的值都是张量的形式。...由于张量模型可以处理指标集(元素项)为多维的数据,所以在描述实际问题时,相比矩阵模型其更能接近于实际问题的属性,因此能更好地描述实际问题,** 从而保证神经网络算法是有效的 同时tensorflow库具有降维的作用

    2.4K50

    【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络

    在Pytorch中,使用了一种“反向模式自动微分的技术(reverse-mode auto-differentiation)”,允许在零延时或开销的情况下任意更改网络。...sigmod的导数在0、1极值附近会接近于0,产生“梯度消失”的问题,较长的精度会导致训练非常缓慢,甚至无法收敛。relu导数一直为1,更好的解决了梯度消失问题。...# 输入特征数 hidden_size = 512 # 隐藏层节点数 output_size = 2 # 输出类别数 num_samples = 1000 # 样本数 # 示例数据,实际应用中应替换为真实数据...常见损失函数为 均方误差损失(MSE):用于回归问题,衡量预测值与真实值之间的平方差的平均值。...# 输入特征数 hidden_size = 512 # 隐藏层节点数 output_size = 2 # 输出类别数 num_samples = 1000 # 样本数 # 示例数据,实际应用中应替换为真实数据

    36710

    资源 | 给卷积神经网络“修理工”的一份“说明书”

    下面的内容直接引自Bengio的论文:最优学习率通常接近于不会增加训练误差的最大学习率,一种可以指导启发式设置学习率的观测方法是,例如,以较大的学习率开始,如果训练误差发散,就用最大学习率除以3再试试,...,而且优化的是正确的张量。...为了检查这一点,你可以查看TensorBoard的直方图,或者编写一个脚本,在几个不同的训练实例中计算每个张量的范数(L1或 L∞),并打印出这些张量的名称。...,使用TensorBoard的直方图,或编写一个脚本,在几个不同的训练实例中计算每个张量的范数,并打印出这些张量的名称。...用小数步长卷积(strided convolutions)替换最大值汇合层和平均值汇合层。 5. 执行彻底的超参数搜索。 6. 更改随机数种子。 7. 如果上面的方法都失败了,还是去寻找更多数据吧。

    72410

    TensorFlow2.0(7):4种常用的激活函数

    TensorFlow2.0(1):基本数据结构——张量 TensorFlow2.0(2):数学运算 TensorFlow2.0(3):张量排序、最大最小值 TensorFlow2.0(4):填充与复制...TensorFlow2.0(5):张量限幅 TensorFlow2.0(6):利用data模块进行数据预处理 1 什么是激活函数 激活函数是深度学习,亦或者说人工神经网络中一个十分重要的组成部分...2 常用激活函数 2.1 sigmoid函数 sigmoid函数可以将整个实数范围的的任意值映射到[0,1]范围内,当当输入值较大时,sigmoid将返回一个接近于1的值,而当输入值较小时,返回值将接近于...感受一下TensorFlow中的sigmoid函数: import tensorflow as tf x = tf.linspace(-5., 5.,6) x TensorFlow中的激活函数可不止这4个,本文只是介绍最常用的4个,当然,其他激活函数大多是这几个激活函数的变种。

    1.3K20

    文末福利|一文上手TensorFlow2.0(一)

    计算图中的一个运算操作可以获得零个或多个张量作为输入,运算后会产生零个或多个张量输出。...表2-2 TensorFlow中张量的形状示例 TensorFlow中有一些特殊的张量,以下是一些主要的特殊张量: tf.Variable(变量,TensorFlow中的张量一般都不会被持久化保存,参与一次运算操作后就会被丢弃了...模型的参数是保存在变量中的,在模型的训练过程中,参数在不断地更新。变量的值可以修改,但是维度不可以变。) tf.constant(常量,常量定义时必须初始化值,且定义后其值和维度不可再改变。)...tf.placeholder(占位符,在执行“session.run()”方法时传入具体的值,TensorFlow2.0中不再使用,但依然可以在“tensorflow.compat.v1”模块中找到。)...接下来我们看看TensorFlow 2.0的一些主要变化。 1. API精简 很多TensorFlow 1.x的API在2.0中被去掉或者改变了位置,还有一些则被新的API给替换掉了。

    1.3K31

    Sklearn、TensorFlow 与 Keras 机器学习实用指南第三版(九)

    使用交叉验证微调超参数: 将数据转换选择视为超参数,特别是在您不确定时(例如,如果您不确定是用零还是中位数替换缺失值,或者只是删除行)。...如果调用to_tensor()方法,不规则张量将转换为常规张量,用零填充较短的张量以获得相等长度的张量(您可以通过设置default_value参数更改默认值): >>> r.to_tensor() 的文档。 稀疏张量 TensorFlow 还可以高效地表示稀疏张量(即包含大多数零的张量)。...默认情况下,读取一个项目也会用相同形状但全是零的张量替换它。如果不想要这样,可以将clear_after_read设置为False。...这是因为 print() 函数不是一个 TensorFlow 操作,所以它只会在 Python 函数被跟踪时运行,这发生在图模式下,参数被替换为符号张量(相同类型和形状,但没有值)。

    18300
    领券