对于 ParameterServerStrategy V2,我们将从几个方面来研究:如何与集群建立连接,如何生成变量,如何获取数据,如何运行。其中,变量和作用域我们在前文已经研究过,运行在 MirroredStrategy 里面也介绍,所以本文主要看看如何使用,如何初始化。在下一篇之中会重点看看如何分发计算。
去年 10 月,谷歌才发布了 TensorFlow 2.0 正式版。时隔三个月后,昨日官方发布了 TensorFlow 2.1,本次版本更新带了了多项新特性、功能改进和 bug 修复。
https://tensorflow.google.cn/guide/distributed_training(此文的信息是2.3版本之前)。
在本文中,您将发现Keras和tf.keras之间的区别,包括TensorFlow 2.0中的新增功能。
今年初,我们在 TensorFlow 开发者大会 (TensorFlow Dev Summit) 上发布了 TensorFlow 2.0 的 Alpha 版本。经过近 7 个月的努力,今天我们高兴的宣布,TensorFlow 2.0 正式版现已推出!
前文之中我们已经介绍了 Strategy 这个基本概念,tf.distribute.Strategy 是一个可在多个 GPU、多台机器或 TPU 上进行分布式训练的 TensorFlow API。使用此 API,您只需改动较少代码就能基于现有模型和训练代码来实现单机多卡,多机多卡等情况的分布式训练。tf.distribute.Strategy 旨在实现以下目标:
TensorFlow 已经发展为世界上最受欢迎和被广泛采用的机器学习平台之一,我们衷心感谢一直以来支持我们的各界的开发者和他们的贡献:
本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载
作为最流行的深度学习框架,TensorFlow 已经成长为全球使用最广泛的机器学习平台。目前,TensorFlow 的开发者社区包括研究者、开发者和企业等。
2018 年 11 月,TensorFlow 迎来了它的 3 岁生日,我们回顾了几年来它增加的功能,进而对另一个重要里程碑 TensorFlow 2.0 感到兴奋 !
TensorFlow和PyTorch是两个最受欢迎的开源深度学习框架,这两个框架都为构建和训练深度学习模型提供了广泛的功能,并已被研发社区广泛采用。但是作为用户,我们一直想知道哪种框架最适合我们自己特定项目,所以在本文与其他文章的特性的对比不同,我们将以实际应用出发,从性能、可伸缩性和其他高级特性方面比较TensorFlow和PyTorch。
在深度学习时代,训练数据特别大的时候想要单卡完成训练基本是不可能的。所以就需要进行分布式深度学习。在此总结下个人近期的研究成果,欢迎大佬指正。
Google深度学习科学家、Keras作者François Chollet热情的表示:“TensorFlow 2.0是一个来自未来的机器学习平台,它改变了一切”。
Google Colab免费为TPUs提供实验支持!在本文中,我们将讨论如何在Colab上使用TPU训练模型。具体来说,我们将通过在TPU上训练huggingface transformers库里的BERT来进行文本分类。
Checkpointing Tutorial for TensorFlow, Keras, and PyTorch
由于一般GPU的显存只有11G左右,(土豪误入),采用多主机分布式训练是非常有必要的;折腾了几天,按照谷歌的教程,终于搞清楚了,给大家梳理一下:
在深度学习领域,TensorFlow作为一款强大的开源机器学习框架,为研究者和开发者提供了丰富的工具和库来构建、训练和部署机器学习模型。随着模型规模的不断扩大和应用场景的日益复杂,如何高效地优化这些模型,使之在有限的计算资源下达到最佳性能,成为了一个至关重要的课题。本文将深入探讨几种基于TensorFlow的模型优化策略,并通过实战代码示例,帮助读者掌握优化技巧,提升模型的训练效率与预测性能。
TensorFlow 2.0 安装指南:https://www.tensorflow.org/install
文章目录 1. 单机多卡 MirroredStrategy 2. 多机训练 MultiWorkerMirroredStrategy 3. TPU 张量处理单元 学习于:简单粗暴 TensorFlow 2 1. 单机多卡 MirroredStrategy # 分布式训练 import tensorflow as tf import tensorflow_datasets as tfds # 1 单机多卡 MirroredStrategy strategy = tf.distribute.Mirrored
https://github.com/lilihongjava/leeblog_python/tree/master/TensorFlow_GPU
TensorFlow 发布以来,已经成为全世界最广泛使用的深度学习库。但 Tensorflow 1.x 时代最广受诟病的问题是:学习门槛较高、API 重复且复杂、模型部署和使用不够方便。之后,谷歌下定决心改变这一问题,在今年早些时候,发布了 Tensorflow 2.0 的 Alpha 版本。Alpha 版本一经问世,便受到深度学习研究者、开发者和在校学生的好评,其简洁的 API 和快速易上手的特性吸引了更多用户的加入。今天,Tensorflow 官方发布了 2.0 时代的 Beta 版本,标志着 Tensorflow 这一经典的代码库进一步成熟。
好多天没有更新原创文章了,国庆前的一段时间确实比较忙,整个九月在参加各种面试,另外还有公司的项目,还有自己的毕设,另外还需要准备参加一些活动和讲座,时间排的很紧,不过还在这些事情基本在国庆来临之际都暂告一段落了,所以国庆我也没打算再干太多事情,就准备在家休养生息。
代码路径:https://github.com/lilihongjava/leeblog_python/tree/master/tensorflow_logistic_regression
大数据时代的到来带来了海量数据的处理和分析需求。在这个背景下,TensorFlow作为一种强大的深度学习框架,展现了其在大数据领域中的巨大潜力。本文将深入探索TensorFlow在大数据处理和分析中的应用,介绍其在数据预处理、模型构建、分布式训练和性能优化等方面的优势和特点。
版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/75633754
本文梳理了tf 2.0以上版本的API结构,用于帮助国内的初学者更好更快的了解这个框架,并为检索官方的API文档提供一些关键词。
经过5个月的公开Beta测试,深度学习框架Keras 3.0终于面向所有开发者推出。
本文我们主要来看看ParameterServerStrategy如何分发计算,也就是ClusterCoordinator如何运作。这是TF分布式的最后一篇。
深度学习模型通常具有许多可以调整的超参数,例如学习率、批次大小、隐藏层数、神经元数量及优化器等。为了在给定的任务和数据集上获得模型的最佳性能,我们需要找到在模型中使用的最佳超参数值。搜索最佳超参数组合的过程称为超参数优化。
在人工智能发展史上,各类算法可谓层出不穷。近十几年来,深层神经网络的发展在机器学习领域取得了显著进展。通过构建分层或「深层」结构,模型能够在有监督或无监督的环境下从原始数据中学习良好的表征,这被认为是其成功的关键因素。
在 TensorFlow 之中,分布式变量是在多个设备上创建的变量。Mirrored variable 和 SyncOnRead variable 是两个例子。本文就对分布式变量进行分析。我们通过一系列问题来引导分析:
导读:2019 年 11 月末,TensorFlow 的官方 GitHub 账号发布了 TensorFlow 2.1.0-rc 版本,现在,官方最新发布了 TensorFlow 2.1.0 正式版本。据介绍,这将是最后一个支持 Python 2 的版本。除此之外,TensorFlow 2.1.0 还带来了很多重大更新与改进,了解一下。
通过本教程,你可以了解 Keras 和 tf.keras 之间的区别,以及 TensorFlow 2.0 的新特性。本教程的灵感来自于上周二我在 PyImageSearch 阅读器上收到的一封邮件。
本文主要介绍了分布式深度学习的各框架以及一些分布式深度学习训练中的常见问题,如:docker及ssh环境问题、nccl多机通信问题等。
【磐创AI导读】:本系列文章介绍了与tensorflow的相关知识,包括其介绍、安装及使用等。本篇文章是本系列文章的最后一篇。查看上篇:一文上手Tensorflow2.0之tf.keras|三。在文末作者给出了答疑群的二维码,有疑问的读者可以进群提问。想要获取更多的机器学习、深度学习资源,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
有了能做出惊人预测的模型之后,要做什么呢?当然是部署生产了。这只要用模型运行一批数据就成,可能需要写一个脚本让模型每夜都跑着。但是,现实通常会更复杂。系统基础组件都可能需要这个模型用于实时数据,这种情况需要将模型包装成网络服务:这样的话,任何组件都可以通过REST API询问模型。随着时间的推移,你需要用新数据重新训练模型,更新生产版本。必须处理好模型版本,平稳地过渡到新版本,碰到问题的话需要回滚,也许要并行运行多个版本做AB测试。如果产品很成功,你的服务可能每秒会有大量查询,系统必须提升负载能力。提升负载能力的方法之一,是使用TF Serving,通过自己的硬件或通过云服务,比如Google Cloud API平台。TF Serving能高效服务化模型,优雅处理模型过渡,等等。如果使用云平台,还能获得其它功能,比如强大的监督工具。
如果想尝试使用Google Colab上的TPU来训练模型,也是非常方便,仅需添加6行代码。
在2018年TensorFlow开发者峰会上,我们(TensorFlow团队)宣布发布TensorFlow Probability:一种使机器学习研究人员及相关从业人员可以快速可靠地利用最先进硬件构建复杂模型的概率编程工具箱。TensorFlow Probability适用的情况包括:
我们都知道树模型的特征重要性是非常容易绘制出来的,只需要直接调用树模型自带的API即可以得到在树模型中每个特征的重要性,那么对于神经网络我们该如何得到其特征重要性呢?
谷歌团队 2015 年发布的 TensorFlow 框架是目前机器学习领域最流行的框架之一。虽然后起之秀 PyTorch 奋起直追,但 TensorFlow 框架的使用者仍然众多。
專 欄 ❈那只猫,Python中文社区专栏作者,福州大学大二水利专业学生,纯种非CS科班的数据分析师,熟练掌握Python数据分析大礼包,因长时间玩弄Keras而陷入深度学习的大坑中不能自拔。❈— 今天,谷歌联合Columbia University、Adobe(就是你们知道的那个Adobe)提出深度概率编程语言Edward,我就其发布Edward的专业论文,给大家介绍一下,这个秒天秒地秒空气的牛逼哄哄的新语言(框架)。 为什么开发Edward? 因为现在的概率编程语言啊, Too Young!Too S
初学者在调用keras时,不需要纠结于选择tf.keras还是直接import keras,现如今两者没有区别。从具体实现上来讲,Keras是TensorFlow的一个依赖(dependency)。但,从设计上希望用户只透过TensorFlow来使用,即tf.keras。
选自Medium 作者:Josh Dillon、Mike Shwe、Dustin Tran 机器之心编译 参与:白妤昕、李泽南 在 2018 年 TensorFlow 开发者峰会上,谷歌发布了 TensorFlow Probability,这是一个概率编程工具包,机器学习研究人员和从业人员可以使用它快速可靠地构建最先进、复杂的硬件模型。 TensorFlow Probability 适用于以下需求: 希望建立一个生成数据模型,推理其隐藏进程。 需要量化预测中的不确定性,而不是预测单个值。 训练集具有大量相对
TF-Replicator,本来是内部自用的一个软件库,能够让从来没做过分布式系统的研究人员方便地在多GPU/云TPU上部署他们的TensorFlow模型,也适用于Keras。
相比较r语言的s3s4rc r6的混乱,python的面向对象比较规范,看着也比较舒服
领取专属 10元无门槛券
手把手带您无忧上云