首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

个性化大脑连接组指纹:它们在认知中的重要性

人脑的神经网络结构模式可能与个体在表型、行为、遗传决定因素和神经精神障碍的临床结果方面的差异有关。最近的研究表明,个性化的神经(大脑)指纹可以从大脑的结构连接体中识别出来。然而,个性化指纹在认知方面的准确性、可重复性和翻译潜力尚未完全确定。在本研究中,我们引入了一种动态连接体建模方法来识别一组关键的白质子网络,可以用作个性化指纹。我们进行了几个个体变量评估,以证明个性化指纹的准确性和实用性,特别是预测中年成年人的身份和智商,以及幼儿的发育商。我们的发现表明,我们的动态建模方法发现的指纹足以区分个体,也能够预测整个人类发展的一般智力能力。

02

功能连接作为框架来分析脑环路对fMRI的贡献

近年来,功能性神经成像的研究领域已经从单纯的局部化研究孤立的脑功能区域,转向更全面地研究功能网络中的这些区域。然而,用于研究功能网络的方法依赖于灰质中的局部信号,在识别支持脑区域间相互作用的解剖环路方面是有限的。如果能绘制大脑各区域之间的功能信号传导回路,就能更好地理解大脑的功能特征和功能障碍。我们开发了一种方法来揭示大脑回路和功能之间的关系:功能连接体Functionnectome。Functionnectome结合功能性核磁共振成像(fMRI)的功能信号和白质回路解剖,解锁并绘制出第一张功能性白质地图。为了展示这种方法的通用性,我们提供了第一张功能性白质图,揭示了连接区域对运动、工作记忆和语言功能的共同贡献。Functionnectome自带一个开源的配套软件,并通过将该方法应用于现有的数据集和任务fMRI之外,开辟了研究功能网络的新途径。

02

白质脑功能网络图论分析:抑郁症分类和预测的神经标记

脑连接体拓扑结构异常是重度抑郁障碍(MDD)病理机制的基础。然而,越来越多的证据只关注脑灰质中的功能组织,而忽略了已被证实具有可靠稳定拓扑组织的白质中的功能信息。本研究旨在从一个新的视角-白质WM功能连接组拓扑结构来表征MDD的功能模式中断。我们对发现的91例未服药MDD患者和225例健康对照(HC)和复制样本(34例未服药MDD患者和25例HC)进行了病例对照、横断面静息状态功能磁共振成像研究。在128个解剖区域构建WM功能网络,并使用基于图论的方法分析其全局拓扑性质(如小世界性)。在系统层面,普遍存在的小世界架构和局部信息处理能力在未服药的MDD患者中可检测到,但不如在HC中显著,这意味着MDD白质功能连接体向随机化转变。在一个独立样本中得到了一致的结果。在临床应用中,发现样本中WM功能连接组的小世界拓扑对疾病严重程度有预测作用(汉密尔顿抑郁量表)(r = 0.34, p = 0.001)。此外,基于拓扑的分类模型可以推广用于区分复制样本中的MDD患者和HC(准确率,76%;敏感性,74%;特异性,80%)。我们的结果强调了可复制的拓扑移位的WM功能连接组结构,并提供了可能的临床应用,其中包括最佳小世界拓扑作为MDD患者分类和预测的潜在神经标志物。

03

Cerebral Cortex:基因和环境对大脑功能连接的影响

详细绘制基因和环境对功能连接体的影响是发展基因与临床诊断或认知能力之间的中间表型的关键一步。我们分析了来自两个成年双胞胎样本的静息状态功能磁共振成像数据,以量化遗传和环境对264个大脑区域(35000个功能连接)之间所有成对功能连接的影响。整个连接体的非共享环境影响较高。大约有14-22%的连接在每个样本中具有显著的遗传影响,4.6%的连接在两个样本中显著,12%的遗传力估计大于30%。共享环境影响的证据是微弱的。一种新的全连接体双变量遗传建模程序揭示,连接上的遗传影响不同于连接体整体总结测量、基于网络的连接估计和静息状态扫描期间的运动的遗传影响。大脑的遗传结构是多样的,并不像人们想象的那样,仅仅依靠非遗传信息数据或低分辨率数据的结构。作为后续研究,我们对功能连接进行了新的分类,并研究了具有特别强遗传影响的高度局部性连接。这种脑连通性的高分辨率遗传分类学将有助于理解基因对脑疾病的影响。

02

耶鲁神经科学扫描大脑判断人类智力,区分准确率达99%

【新智元导读】神经科学家能通过扫描大脑知道一个人的智力水平,不仅如此,只需通过扫描大脑,还能够知道一个人的长处和短处。耶鲁大学的研究人员通过一系列不同的测试来评估参与者的记忆力、智力、运动能力和抽象思维能力。他们发现,每个人的连接体都是独一无二的,就如指纹一样。根据大脑的扫描成像,研究者能区分每一个参与者,准确率达到 99%。 你觉得你在某方面非常有天分吗?比如非常擅长某种乐器、某类运动,或某个科目,例如数学?这些“天分”可能跟你的大脑的连接方式有关。不同的人有不同的天分。这些“天分”存储于大脑的不同位置,

05

Nature Reviews Neuroscience:迈向一个有生物学注解的大脑连接体

大脑是一个交错的神经回路网络。在现代连接组学中,大脑连接通常被编码为节点和边的网络,抽象出局部神经元群的丰富生物细节。然而,网络节点的生物学注释——如基因表达、细胞结构、神经递质受体或内在动力学——可以很容易地测量并覆盖在网络模型上。在这里,我们回顾了如何将连接体表示为注释网络并进行分析。带注释的连接体使我们能够重新定义网络的结构特征,并将大脑区域的连接模式与其潜在的生物学联系起来。新出现的研究表明,带注释的连接体有助于建立更真实的大脑网络形成、神经动力学和疾病传播模型。最后,注释可用于推断全新的区域间关系,并构建补充现有连接体表示的新型网络。总之,生物学注释的连接体提供了一种令人信服的方法来研究与局部生物学特征相一致的神经连接。

01

连接组学表征的新进展

近年来,利用静息状态功能性MRI对人类连接组(即人类大脑中的所有连接)的研究迅速普及,特别是随着大规模神经成像数据集的日益可用性。这篇综述文章的目的是描述自2013年神经影像特刊《连接组图谱》以来,功能连接组表征在过去8年里出现的创新。在这一时期,研究已从群体层面的大脑分区化转向个性化连接组的表征以及个体连接组差异与行为/临床变异之间的关系。在分区边界中实现特定个体的准确性,同时保持跨个体通信是一项挑战,目前正在开发各种不同的方法来应对这一挑战,包括改进的对齐、改进的降噪和稳健的群体到个体映射方法。除了对个性化连接组的兴趣之外,人们正在研究数据的新表示,以补充传统的分区连接组表示(即,不同大脑区域之间的成对连接),例如捕捉重叠和平滑变化的连接模式(梯度)的方法。这些不同的连接组表征为大脑固有的功能组织提供了有益的见解,但功能连接组的研究仍然面临挑战。未来的研究将进一步提高可解释性,以深入了解功能MRI所获得的连接组观察的神经机制。还需要进行比较不同连接组表征的验证研究,以建立共识和信心,继续进行临床试验,这些临床试验可能产生有意义的连接组研究转化。

02

比较脑磁图与高密度脑电图的内在功能连通性

脑磁图(MEG)与基于限带功率包络相关的静息状态功能连接(rsFC)联合使用,可以研究人类大脑内在网络所组成的静息状态网络(RSNs)。然而,目前MEG系统的可用性有限,阻碍了电生理rsFC的临床应用。在这里,我们直接比较了已知的RSNs以及全脑rsFC连接体及其状态动力学,这些数据来源于同时记录的MEG和高密度头皮脑电图(EEG)静息状态数据。通过比较头部边界模型和头部有限元模型的结果,研究了头部模型精度对脑电rsFC估计的影响。结果显示,除额顶叶网络外,MEG和EEG获得的RSN图大部分相似。在连接体水平,与脑电图相比,MEG对额部rsFC的敏感性较低,而对顶枕部rsFC的敏感性较高。这主要是由于脑磁图传感器相对于头皮位置的不均匀性,当考虑相对脑磁图传感器位置时,显著的脑磁图差异消失了。在区分灰质和白质的脑电图中,默认网络是唯一需要高级头部建模的RSN。重要的是,rsFC状态动力学的比较证明了MEG和头皮脑电图之间的较差的对应关系,表明了对瞬态神经功能整合的不同成分的敏感性。因此,这项研究表明,基于人脑连接体的静态rsFC研究可以以类似于MEG的方式在头皮脑电图中进行,为rsFC分析的广泛临床应用开辟了道路。本文发表在NeuroImage杂志。。

03

Nature Communications:基因对人类连接组中hub连接的影响

脑网络hubs间高度连接且其内部也高度连接,为连通神经动力形成了一个重要的通信主干。但是,对该机制的研究很少。本文使用双胞胎的弥散加权磁共振成像数据,确定了基因的主要作用,表明它们优先影响人类连接组的网络hubs间的连接强度。使用转录图谱数据,结果表明连接的hubs表现出与细胞结构相似和代谢相关的转录活动的紧密耦合。最后,通过比较13个网络的生成模型,本文发现仅靠随机过程不能解释hubs的精确分布模式,另外,可以通过引入基因约束来提高模型性能。本文的研究结果表明,基因在形成hubs间的连接中起重要而优先的作用,这些连接具有功能性价值且代谢成本高。

01

发育中的大脑结构和功能连接体指纹

在成熟的大脑中,大脑连接的结构和功能指纹可以用来识别个体的独特性。然而,使某一特定大脑区别于其他大脑的特征是否在出生时就已经存在仍不得而知。本研究利用发育中的人类连接组计划(Human Connectome Project, dHCP)的神经影像数据,对早产儿围产期进行两次扫描,以评估发育中的脑指纹。我们发现,62%的参与者可以通过后来的结构连接组与从较早时间点获得的初始连接矩阵的一致性来识别。相反,同一被试在不同时间点的功能连接体之间的相似性较低。只有10%的参与者在功能连接体中表现出更大的自相似性。这些结果表明,结构连接在生命早期更稳定,可以代表个体的潜在连接组指纹:当新生儿必须快速获得新技能以适应新环境时,一个相对稳定的结构连接组似乎支持功能连接组的变化。

02

大脑网络的结构-功能耦合:一种机器学习方法

摘要:虽然大多数生物系统的功能受到其结构的严格限制,但目前的证据表明,大脑网络的结构和功能之间的耦合是相对温和的。我们的目的是研究连接体结构和功能之间的适度耦合是神经系统的基本属性还是当前脑网络模型的局限性。我们开发了一个新的深度学习框架来预测个体的大脑功能的结构体,达到的预测精度,大大超过了最先进的生物物理模型。重要的是,从个体的结构连接体预测的大脑功能解释了认知表现的显著个体间差异。我们的结果表明,人类大脑网络的结构-功能耦合比之前认为的要紧密得多。我们建立了现有的大脑网络模型可以改进的边界,并展示了深度学习如何促进大脑功能和行为之间关系的研究。

00

Nature子刊:基于多模态研究的面孔识别网络的构建

面部处理支持我们识别朋友和敌人、形成部落和理解面部肌肉组织变化的情感含义的能力。这一技能依赖于大脑区域的分布式网络,但这些区域如何相互作用却知之甚少。在这里,作者将解剖学和功能连接测量与行为测定相结合,创建一个面部连接体的全脑模型。本文分析了关键特性,如网络拓扑结构和纤维组成。作者提出了一个有三个核心流的神经认知模型;沿着这些流的面部处理以平行和交互的方式发生。虽然远距离白质连接通道很重要,但面孔识别网络主要是短距离白质纤维。最后,本文提供的证据表明,众所周知的面部处理的右侧偏侧来自于大脑半球内和半球间的连接不平衡。总之,人脸网络依赖于高度结构化的纤维束之间的动态通信,从而支持行为和认知的连贯的人脸处理。这篇文章发表在期刊Nature Human Behavior杂志上。

02

个体化精准神经成像:目前的方法和未来的方向

大多数脑功能的神经影像学研究都是在标准化空间中分析数据,以确定参与者的共同激活区域。这些研究将大脑组织的个体差异视为噪音,但这种方法可能会掩盖有关大脑功能结构的重要信息。最近,一些研究采用了针对个体的方法,旨在描述这些个体差异的特征,并探索其可靠性和对行为的影响。这些研究的一个子集采用了精确成像方法,从每个参与者那里收集多个小时的数据,以更精细的尺度绘制大脑功能。在这篇综述中,我们对特定于人的精确成像技术如何使用静息状态测量来检查大脑组织中的个体差异及其对行为的影响进行了广泛的概述,随后是基于任务的活动如何继续为这些发现添加细节。我们认为,在认知神经科学的许多领域,针对人的精确方法在揭示大脑功能组织及其与行为关系的新细节方面表现出了巨大的希望。我们还讨论了这个新领域目前的一些限制以及它可能采取的一些新方向。

04

精神分裂症和双相情感障碍患者的年轻后代的脑网络在富人俱乐部和结构-功能耦合方面受到遗传影响

当前生物精神病学的一个紧迫问题是阐明导致主要精神疾病表现的大脑发育模式,其中一个很有价值的范例是对精神分裂症和双向情感障碍风险增加的年轻人研究。精神分裂症和双向情感障碍可由遗传介导,从而使这些疾病患者的后代也成为了高危人群。除了遗传倾向外,父母患有精神疾病也会增加儿童期环境压力,从而进一步增加患精神疾病的风险。确定这些高危后代的精神障碍可能有助于阐明在已确定的疾病中观察到的大脑异常的发育起源,并有助于制定旨在改善或预防精神病的早期检测和干预策略。

02

大脑功能连接的发展遵循青春期依赖的非线性轨迹

青春期是对身体和行为产生巨大影响的发育时期,青春期荷尔蒙不仅对身体的形态变化起着重要作用,而且对大脑的结构和功能也起着重要作用。了解青少年时期的大脑发育已经成为神经科学领域的首要任务,因为它与许多精神和行为障碍的发作相吻合。然而,关于青春期如何影响大脑功能连接体,我们知之甚少。在这项研究中,通过对典型发育儿童和青少年(两性)的纵向人类样本的研究,我们证明了大脑功能连接体的发育更符合青春期状态,而不是实足年龄。特别是,大脑功能连接体的中心性、分离性、效率和整合性在青春期标记物出现后增加。我们发现,这些效应在注意力和任务控制网络中更强。最后,在控制了这一效应后,我们发现这些网络之间的功能连接与更好的认知灵活性有关。本研究指出了在探索发育轨迹时考虑纵向非线性趋势的重要性,并强调了青春期对大脑功能组织的影响。

02

针对个体的精准神经影像—当前的方法和未来方向

大多数大脑功能的神经成像研究都是在归一化空间中分析数据,以识别参与者的共同激活区域。这些研究把大脑组织的个体间差异当作噪音,但这种方法可能掩盖关于大脑功能结构的重要信息。最近,许多研究采用了一种针对个体的方法,旨在描述这些个体差异,并探索它们的可靠性和对行为的影响。这些研究中有一部分采用了精确成像方法,从每个参与者身上收集数小时的数据,以更精细的比例绘制大脑功能图。在这篇综述中,我们提供了一个广泛的概述,即个体特异性和精准成像技术如何使用静息状态测量来检查大脑组织的个体差异及其对行为的影响,然后基于任务的活动如何继续增加这些发现的细节。我们认为,在认知神经科学的许多领域中,个体特异性和精确方法在揭示大脑功能组织及其与行为的关系的新细节方面显示了巨大的希望。我们还讨论了该新领域目前的一些局限性和可能采取的一些新方向。

01

皮质-皮质网络的多尺度交流

大脑网络中的信号在多个拓扑尺度上展开。区域可以通过局部回路交换信息,包括直接邻居和具有相似功能的区域,或者通过全局回路交换信息,包括具有不同功能的远邻居。在这里,我们研究了皮质-皮质网络的组织如何通过参数化调整信号在白质连接体上传输的范围来调节局部和全局通信。我们发现,大脑区域在偏好的沟通尺度上是不同的。通过研究大脑区域在多个尺度上与邻居交流的倾向,我们自然地揭示了它们的功能多样性:单模态区表现出对局部交流的偏好,而多模态区表现出对全球交流的偏好。我们表明,这些偏好表现为区域和尺度特定的结构-功能耦合。即,单模态区域的功能连接出现在小尺度回路的单突触通信中,而跨模态区域的功能连接出现在大尺度回路的多突触通信中。总之,目前的研究结果表明,交流偏好在大脑皮层之间是高度异质性的,形成了结构-功能耦合的区域差异。

02

脑网络通信: 概念、模型和应用

摘要:理解神经系统中的交流和信息处理是神经科学的中心目标。在过去的二十年中,连接组学和网络神经科学的进步为研究复杂大脑网络中的多突触通信开辟了新的途径。最近的研究对连接体信号仅通过最短路径发生的主流假设提出了质疑,这导致了大量替代网络通信模型的出现。本文综述了脑网络通信模型的最新进展。我们首先从图论的数学和神经信号传导的生物学方面(如传输延迟和代谢成本)之间的概念联系开始。我们将关键的网络通信模型和措施组织到一个分类法中,旨在帮助研究人员在文献中导航越来越多的概念和方法。该分类学强调了连接体信号传导不同概念的优点、缺点和解释。我们通过回顾在基础、认知和临床神经科学中的突出应用,展示了网络通信模型作为一种灵活、可解释和易于处理的框架来研究脑功能的效用。最后,对未来网络通信模型的发展、应用和验证提出了建议。

05
领券