首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

tf.train.batch

如果enqueue_many为False,则假定张量表示单个示例。一个形状为[x, y, z]的输入张量将作为一个形状为[batch_size, x, y, z]的张量输出。...注意: 如果dynamic_pad为False,则必须确保(i)传递了shapes参数,或者(ii)张量中的所有张量必须具有完全定义的形状。如果这两个条件都不成立,将会引发ValueError。...如果dynamic_pad为真,则只要知道张量的秩就足够了,但是单个维度可能没有形状。...在这种情况下,对于每个加入值为None的维度,其长度可以是可变的;在退出队列时,输出张量将填充到当前minibatch中张量的最大形状。对于数字,这个填充值为0。对于字符串,这个填充是空字符串。...此外,通过shape属性访问的所有输出张量的静态形状的第一个维度值为None,依赖于固定batch_size的操作将失败。参数:tensors: 要排队的张量列表或字典。

1.4K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    tf.unstack

    tf.unstack( value, num=None, axis=0, name='unstack')将秩为R张量的给定维数分解为秩为(R-1)张量。...通过沿着轴维对num张量进行切分,从值中解压缩num张量。如果没有指定num(默认值),则从值的形状推断它。如果value.shape[axis]未知,将引发ValueError。...例如,给定一个形状张量(A, B, C, D);如果axis == 0,那么输出中的第i张量就是切片值[i,:,:,:],而输出中的每个张量都有形状(B, C, D)。...(注意,与split不同的是,未打包的维度已经没有了)。如果axis == 1,则输出中的第i张量为切片值[:,i,:,:],输出中的每个张量都有形状(A, C, D)等。这是堆栈的反面。...参数:value: 一个秩为R的> 0张量要被解压。num: 一个int类型, 一个整型数。尺寸轴的长度。如果没有(默认值)就自动推断。axis: 一个整型数。沿着整型数展开堆栈。

    1K20

    解决ValueError: Cannot feed value of shape (1, 10, 4) for Tensor Placeholder:0 , w

    解决ValueError: Cannot feed value of shape (1, 10, 4) for Tensor Placeholder:0 , which has shape在使用深度学习框架进行模型训练或推理时...Placeholder张量相当于在图中定义了一个占位符,告诉TensorFlow在运行时需要提供一个具体的值。...Placeholder张量的主要特点如下:形状(shape)不固定: 在定义Placeholder时,通常会将形状(shape)设置为None或部分确定的值,以便在运行时能够接受不同形状的输入数据。...在构建计算图时不会执行任何计算: Placeholder张量本身没有值,只是一个占位符,它在计算图构建阶段主要用于确定模型的结构和输入参数的形状。...当我们在运行时提供了具体的输入数据时,TensorFlow会根据提供的数据自动推断Placeholder张量的形状。

    55630

    ValueError: Error when checking : expected input_1 to have 4 dimensions, but got

    问题描述这个错误的具体描述是:期望的输入数据应该具有4个维度,但实际传入的数组形状只有(50, 50, 3)。这意味着模型期望输入一个4维的张量,而当前的输入数据是一个3维的张量。...(50, 50, 3)# 使用np.expand_dims()在第0个维度上扩展数据expanded_data = np.expand_dims(input_data, axis=0)# 打印扩展后的数据形状...)以上这些方法都可以将输入数据转换为4维张量,从而解决ValueError: Error when checking错误。...然后,使用np.expand_dims()函数在轴0(行)插入一个新的维度。在操作之后,我们打印出原始数组和插入新维度后的数组的形状。...可以看到,原始数组arr的形状为(5,),而插入新维度后的数组expanded_arr的形状为(1, 5)。

    49420

    tf.while_loop

    shape_constant参数允许调用者为每个循环变量指定一个不太特定的形状变量,如果形状在迭代之间发生变化,则需要使用该变量。tf.Tensor。...稀疏张量和转位切片的形状不变式特别处理如下:a)如果一个循环变量是稀疏张量,那么形状不变量必须是张量形状([r]),其中r是由稀疏张量表示的稠密张量的秩。...b)如果循环变量是索引切片,则形状不变量必须是索引切片的值张量的形状不变量。它表示索引切片的三个张量的形状为(shape, [shape[0]], [shape.ndims])。...这些张量是内存消耗的主要来源,在gpu上进行训练时经常导致OOM错误。当swap_memory标志为true时,我们将这些张量从GPU交换到CPU。例如,这允许我们用很长的序列和大量训练RNN模型。...name:返回的张量的可选名称前缀。返回值:循环变量的输出张量。返回值具有与loop_vars相同的结构。

    2.8K40

    tf.where

    记住,输出张量的形状可以根据输入中有多少个真值而变化。索引按行主顺序输出。如果两者都是非零,则x和y必须具有相同的形状。如果x和y是标量,条件张量必须是标量。...条件张量充当一个掩码,它根据每个元素的值选择输出中对应的元素/行是来自x(如果为真)还是来自y(如果为假)。...参数:condition: bool类型的张量x: 一个张量,它的形状可能和条件相同。...如果条件为秩1,x的秩可能更高,但是它的第一个维度必须与条件的大小匹配y: 与x形状和类型相同的张量name: 操作的名称(可选)返回值:一个与x, y相同类型和形状的张量,如果它们是非零的话。...一个带形状(num_true, dim_size(condition))的张量。

    2.3K30

    tensorflow中的slim函数集合

    否则,如果‘normalizer_fn’为None,并且提供了一个‘biases_initializer’,那么就会创建一个‘bias’变量,并添加隐藏的单元。...注意:如果“输入”的秩大于2,那么“输入”在初始矩阵乘以“权重”之前是平坦的。参数:inputs:至少秩为2的张量,最后一个维度为静态值;即。'...第n个维度需要具有指定数量的元素(类的数量)。参数:logits: N维张量,其中N > 1。scope:variable_scope的可选作用域。返回值:一个形状和类型与logits相同的“张量”。...只支持浮点类型返回值:生成单位方差张量的初始化器可能产生的异常:ValueError: if `dtype` is not a floating point type.TypeError: if `mode...[batch_size,…]outputs_collections:用于添加输出的集合scope:name_scope的可选作用域返回值:一个具有形状[batch_size, k]的平坦张量。

    1.6K30

    tf.random_uniform()

    生成的值在该 [minval, maxval) 范围内遵循均匀分布.下限 minval 包含在范围内,而上限 maxval 被排除在外。对于浮点数,默认范围是 [0, 1)。...参数:shape:一维整数张量或 Python 数组.输出张量的形状.minval:dtype 类型的 0-D 张量或 Python 值;生成的随机值范围的下限;默认为0.maxval:dtype 类型的...0-D 张量或 Python 值.要生成的随机值范围的上限.如果 dtype 是浮点,则默认为1 .dtype:输出的类型:float16、float32、float64、int32、orint64....seed:一个 Python 整数.用于为分布创建一个随机种子.查看 tf.set_random_seed 行为.name:操作的名称(可选).返回值:用于填充随机均匀值的指定形状的张量.可能引发的异常...:ValueError:如果 dtype 是整数并且 maxval 没有被指定.

    87650

    tf.expand_dims

    tf.expand_dims( input, axis=None, name=None, dim=None)将维数1插入张量的形状中。(弃用参数)有些论点是不赞成的。...它们将在未来的版本中被删除。更新说明:使用axis参数。给定一个张量输入,这个操作在输入形状的维数索引轴上插入一个维数为1的维度。尺寸指标轴从零开始; 如果为轴指定一个负数,则从末尾向后计数。...参数:input: 一个张量。axis: 0-D(标量)。指定要在其中展开输入形状的维度索引。必须在[-rank(输入)- 1,rank(输入)]范围内。name: 输出张量的名称。...dim: 0-D(标量)。相当于轴,要弃用。返回值:一个与输入数据相同的张量,但它的形状增加了尺寸为1的额外维数。...Raises:ValueError: if both dim and axis are specified.原链接: https://tensorflow.google.cn/versions/r1.12

    1.6K30

    数据处理遇到麻烦不要慌,5个优雅的Numpy函数助你走出困境

    在此期间,根据社区的需求和使用,一些样板代码已经被转换成核心语言或包本身提供的基本功能。本文作者将分享 5 个优雅的 Python Numpy 函数,有助于高效、简洁的数据处理。...在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。...a.reshape(-1,-1) ValueError: can only specify one unknown dimensiona.reshape(3,-1) ValueError: cannot...reshape array of size 8 into shape (3,newaxis) 总而言之,当试图对一个张量进行 reshape 操作时,新的形状必须包含与旧的形状相同数量的元素,这意味着两个形状的维度乘积必须相等...例如,如果指定的区间是 [-1,1],小于-1 的值将变为-1,而大于 1 的值将变为 1。 Clip 示例:限制数组中的最小值为 2,最大值为 6。

    38430

    数据处理遇到麻烦不要慌,5个优雅的Numpy函数助你走出困境

    在此期间,根据社区的需求和使用,一些样板代码已经被转换成核心语言或包本身提供的基本功能。本文作者将分享 5 个优雅的 Python Numpy 函数,有助于高效、简洁的数据处理。 ?...在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。...a.reshape(-1,-1) ValueError: can only specify one unknown dimensiona.reshape(3,-1) ValueError: cannot...reshape array of size 8 into shape (3,newaxis) 总而言之,当试图对一个张量进行 reshape 操作时,新的形状必须包含与旧的形状相同数量的元素,这意味着两个形状的维度乘积必须相等...例如,如果指定的区间是 [-1,1],小于-1 的值将变为-1,而大于 1 的值将变为 1。 ? Clip 示例:限制数组中的最小值为 2,最大值为 6。

    60910

    数据处理遇到麻烦不要慌,5个优雅的Numpy函数助你走出困境

    在此期间,根据社区的需求和使用,一些样板代码已经被转换成核心语言或包本身提供的基本功能。本文作者将分享 5 个优雅的 Python Numpy 函数,有助于高效、简洁的数据处理。 ?...在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。...a.reshape(-1,-1) ValueError: can only specify one unknown dimensiona.reshape(3,-1) ValueError: cannot...reshape array of size 8 into shape (3,newaxis) 总而言之,当试图对一个张量进行 reshape 操作时,新的形状必须包含与旧的形状相同数量的元素,这意味着两个形状的维度乘积必须相等...例如,如果指定的区间是 [-1,1],小于-1 的值将变为-1,而大于 1 的值将变为 1。 ? Clip 示例:限制数组中的最小值为 2,最大值为 6。

    43620

    5个高效&简洁的Numpy函数

    在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。...a.reshape(-1,-1) ValueError: can only specify one unknown dimensiona.reshape(3,-1) ValueError: cannot...reshape array of size 8 into shape (3,newaxis) 总而言之,当试图对一个张量进行 reshape 操作时,新的形状必须包含与旧的形状相同数量的元素,这意味着两个形状的维度乘积必须相等...Numpy 的 argpartion 函数可以高效地找到 N 个最大值的索引并返回 N 个值。在给出索引后,我们可以根据需要进行值排序。...例如,如果指定的区间是 [-1,1],小于-1 的值将变为-1,而大于 1 的值将变为 1。 Clip 示例:限制数组中的最小值为 2,最大值为 6。

    71840

    5个优雅的Numpy函数助你走出数据处理困境

    在此期间,根据社区的需求和使用,一些样板代码已经被转换成核心语言或包本身提供的基本功能。本文作者将分享 5 个优雅的 Python Numpy 函数,有助于高效、简洁的数据处理。...在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。...a.reshape(-1,-1) ValueError: can only specify one unknown dimensiona.reshape(3,-1) ValueError: cannot...reshape array of size 8 into shape (3,newaxis) 总而言之,当试图对一个张量进行 reshape 操作时,新的形状必须包含与旧的形状相同数量的元素,这意味着两个形状的维度乘积必须相等...例如,如果指定的区间是 [-1,1],小于-1 的值将变为-1,而大于 1 的值将变为 1。 ? Clip 示例:限制数组中的最小值为 2,最大值为 6。

    42010

    5个优雅的Numpy函数助你走出数据处理困境

    在此期间,根据社区的需求和使用,一些样板代码已经被转换成核心语言或包本身提供的基本功能。本文作者将分享 5 个优雅的 Python Numpy 函数,有助于高效、简洁的数据处理。 ?...在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。...a.reshape(-1,-1) ValueError: can only specify one unknown dimensiona.reshape(3,-1) ValueError: cannot...reshape array of size 8 into shape (3,newaxis) 总而言之,当试图对一个张量进行 reshape 操作时,新的形状必须包含与旧的形状相同数量的元素,这意味着两个形状的维度乘积必须相等...例如,如果指定的区间是 [-1,1],小于-1 的值将变为-1,而大于 1 的值将变为 1。 ? Clip 示例:限制数组中的最小值为 2,最大值为 6。

    49630

    5个优雅的Numpy函数助你走出困境

    本文转自『机器之心编译』(almosthuman2014) 在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。...有意思的是,我们可以将新形状中的一个参数赋值为-1。这仅仅表明它是一个未知的维度,我们希望 Numpy 来算出这个未知的维度应该是多少:Numpy 将通过查看数组的长度和剩余维度来确保它满足上述标准。...a.reshape(-1,-1) ValueError: can only specify one unknown dimensiona.reshape(3,-1) ValueError: cannot...reshape array of size 8 into shape (3,newaxis) 总而言之,当试图对一个张量进行 reshape 操作时,新的形状必须包含与旧的形状相同数量的元素,这意味着两个形状的维度乘积必须相等...例如,如果指定的区间是 [-1,1],小于-1 的值将变为-1,而大于 1 的值将变为 1。 ? Clip 示例:限制数组中的最小值为 2,最大值为 6。

    67120
    领券