首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Numpy中的stack,轴,广播以及CNN介绍

维度+1 这是和concatenate函数很重要的一个区别,也体现了API中的new axis. result_ndim = arrays[0].ndim + 1 axis = normalize_axis_index...1+(m-1)*2 m = q+r q = (7-1)/2 = 3 r = 0 m = 3 因此最终结果是[1, 3, 5] (1)slice default处理 等价于x[5:4:1] (3) 高维数组处理..., np.newaxis] 以前的arr的shape是(3,4),经过这样的操作之后,就变成了(3,4,1),也就是3个2维数组,每个2维度数组中有4个1维数组,每个1维数组中有1个元素。...numpy中的广播 广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式。 下面的图片展示了数组 b 如何通过广播来与数组 a 兼容。...[4]•numpy.stack 与 numpy.concatenate 用法[5] 公众号 更多机器学习内容,欢迎关注我的微信公众号: 无情剑客。

1.1K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用netron对mnist网络结构分析「建议收藏」

    ndata = 784 2: n->outputs[0]->ndata = 6272 3: n->inputs[0]->ndim = 4 4: n->outputs[0]->ndim = 4 (gdb)...ndata = 6272 2: n->outputs[0]->ndata = 6272 3: n->inputs[0]->ndim = 4 4: n->outputs[0]->ndim = 4 (gdb...ndata = 6272 2: n->outputs[0]->ndata = 6272 3: n->inputs[0]->ndim = 4 4: n->outputs[0]->ndim = 4 (gdb...从最后一层的模型看不出它的结构,实际上它是一个全连接层: 这一点可以通过芯原的模型转换工具的转换结果看出来,芯原的转换工具,可以将ONNX模型转换为芯原NPU吃的json文件模型,而netron是支持此类型的可视化输出的...---- lenet 模型都需要对吃进去的图像做数据归一化,libonnx实现也不例外 ---- 结束! 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。

    92920

    python朴素贝叶斯实现-2

    朴素贝叶斯为何需要特征条件独立 2. 朴素贝叶斯三种模型: 特征是离散的时候,使用多项式模型 特征是连续变量的时候,应该采用高斯模型 特征的取值只能是1和0伯努利模型) 3....对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出Y。...转为数学问题就是比较p(嫁|(不帅、性格不好、身高矮、不上进))与p(不嫁|(不帅、性格不好、身高矮、不上进))的概率,谁的概率大,我就能给出嫁或者不嫁的答案!...没有假设特征之间相互独立,那么我们统计的时候,就需要在整个特征空间中去找,比如统计p(不帅、性格不好、身高矮、不上进|嫁),我们就需要在嫁的条件下,去找四种特征全满足分别是不帅,性格不好,身高矮,不上进的人的个数...,这样的话,由于数据的稀疏性,很容易统计到0的情况 我们这个例子有4个特征,其中帅包括{帅,不帅},性格包括{不好,好,爆好},身高包括{高,矮,中},上进包括{不上进,上进},那么四个特征的联合概率分布总共是

    1K20

    神经网络的数学基础

    79, 3, 35, 1], [7, 80, 4, 36, 2]], [[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]]]) >>> x.ndim...深度学习中,一般操作0D~4D的张量。 核心属性 tensor张量由3个重要的属性: Number of axes轴的个数(秩)。3D tensor有3个轴。...与逐元素操作相反,点积整合输入张量的所有条目。...基于梯度的优化算法 神经网络层对输入进行的数学转换为: \(output = relu(dot(W, input) + b)\) 张量\(W\)和张量\(b\) 是网络层的参数,被称为网络层的权重系数或者可训练参数...随机梯度下降 一个可微分函数,理论上能够找到它的最小值:最小值点导数为0,所以需要找到所有导数为0的点,然后相互比较找到最小值。 神经网络中,意味着找到一组权重值,使损失函数最小。

    1.3K50

    python-opencv2利用cv2.findContours()函数来查找检测物体的轮廓

    ),3) cv2.imshow("img", img) cv2.waitKey(0) 需要注意的是cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),所以读取的图像要先转成灰度的...那么a[:,0]的结果就是: [3,4], [1,2], [5,7], [3,7], [1,8] 这里a[:,0]的意思就是a[0:5,0],也就是a[0:5,0:0:2],这三者是等价的。...因此a[0:5,0]也等价于a[0:5,0:0:2]。 再详细一点,a的全体内容为:[[[3,4]], [[1,2]],[[5,7]],[[3,7]],[[1,8]]]。...去掉第一层方括号,其中有五个元素,每个元素为[[3,4]]这样的,所以第一个索引的范围为[0:5]。注意OpenCV函数返回的多维数组和常见的numpy数组的不同之处!...观察[[3,4]],我们发现其中只有一个元素,即[3, 4],第二个索引为[0:1]。 再去掉一层方括号,我们面对的是[3,4],有两个元素,所以第三个索引的范围为[0:2]。

    4.9K21

    基于OneFlow实现Unfold Fold算子

    从卷积层说起 熟悉CNN的小伙伴应该知道卷积是一个很常用也很重要的操作,CNN里的卷积和信号处理的卷积并不是一回事,CNN的卷积是做一种二维的互相关运算,以《动手学深度学习》5.1章为示例: 《动手学深度学习...= c // ksize // ksize 然后我们需要根据当前处理的输出元素index,来获取对应输入的元素 for h in range(out_h): for...=2, stride=1, pad=0) 输出结果符合预期: [[1. 2. 4. 5...] [2. 3. 5. 6.] [4. 5. 7. 8.] [5. 6. 8. 9.]]...我们假设输入是一个(1, 2, 4, 4)的张量,但在框架内部,我们通常都是以一个一维数组来存储的,如下图所示: 输入内存排布 然而我们需要对应的高维数组索引,OneFlow内部有一个NdIndexHelper

    60310

    python 分水岭算法的实现

    该算法使用优先级队列来保存像素,优先级队列的度量标准是像素值,然后输入队列的时间-这将使关系更加紧密,有利于最接近的标记。...watershed from ..util import crop, regular_seeds def _validate_inputs(image, markers, mask):     """确保分水岭算法的所有输入都具有相同的形状和类型...is None:         if any([x % 2 == 0 for x in c_connectivity.shape]):             raise ValueError("Connectivity...该算法使用优先级队列来保存      像素,优先级队列的度量标准是像素值,其次是输入队列的时间-这将使关系更加紧密,有利于最接近的      标记。    ...3)), ... indices=False) >>> markers = ndi.label(local_maxi)[0] 最后,我们对图像和标记运行分水岭: >>> labels = watershed

    97250

    深入解析xLSTM:LSTM架构的演进及PyTorch代码实现详解

    通过这种方式,sLSTM能够在保持较低计算复杂度的同时,提供与复杂模型相当的性能,特别适用于资源受限的环境或需要快速响应的应用。...这些单元接受来自前一块的输入,执行必要的门控和状态更新操作,然后输出到后续的处理步骤。 跳过连接(Skip Connection): 跳过连接直接将输入传递到块的输出,与主路径输出相加。...标准化层(如层归一化或批归一化): 在残差块的输入或输出端通常会加入标准化层,以稳定训练过程中的数据分布,提高模型的训练效率和泛化能力。...这种设计允许层在处理输入时,每个块只与输入的对应部分进行交互,从而模拟了多个独立的线性变换的集合。...论文中可能更侧重于通过算法优化来增强 LSTM 的功能,而不是像代码实现中那样使用复杂的网络层和结构。 代码中使用了层归一化(LayerNorm)来稳定每层的输入。

    1.4K11

    NLP经典书籍鱼书笔记4:对比计数统计和推理

    大致过程: 基于推理的方法引入某种模型(比如神经网络) 模型接收的上下文作为输入,输出各个单词的出现概率 模型产物:获得单词的分布式表示 神经网络中单词的处理方法 神经网络不能直接处理单词,需要将单词转化成固定长度的向量...模型的输入:上下文,比如['you','goodbye']这样的单词,但是需要转化为one-hot编码表示。 本文中考虑上下文的两个单词,因此模型会有两个输入层。如果是考虑N个单词,则输入层有N个。...从输入层到中间层的变换使用相同的全连接层(权重都是$W_{in}$) 从中间层到输出层神经元的变换由另一个全连接层完成(权重是$W_{out}$) 中间层的神经元是各个输入层经全连接层变换后得到的值得平均...1, 2, 3, 4, 1, 5, 6]) id_to_word {0: 'you', 1: 'say', 2: 'goodbye', 3: 'and', 4: 'i', 5: 'hello', 6:...2], [1, 3], [2, 4], [3, 1], [4, 5], [1, 6]]) target # 目标值 array

    57010

    机器学习|从0开始大模型之位置编码

    在循环神经网络中,序列与序列之间也是有顺序的,所以循环神经网络中,序列与序列之间也是有顺序的,不需要处理这种问题。...3、Transformer中的位置编码层 假设你有一个长度为L的输入序列,要计算第K个元素的位置编码,位置编码由不同频率的正弦和余弦函数给出: 函数 k:词序列中的第K个元素 d:词向量维度,比如512...] [ 0.90929743 -0.41614684 0. ]] 4、大模型训练中的位置编码代码 在我们从0训练大模型中,其位置编码的实现如下: def precompute_pos_cis...ndim = x.ndim # 获取输入的维度 assert 0 ndim # 确保维度有效 assert pos_cis.shape == (x.shape...(xq), xk_out.type_as(xk) # 返回与输入类型一致的输出 这里使用的是RoPE旋转位置编码,和相对位置编码相比,RoPE 具有更好的外推性,Meta 的 LLAMA

    11010
    领券