首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

独家 | 手把手教你用R语言做回归后的残差分析(附代码)

找到异常值的一个快速方法是使用标准化残差。第一种方法是简单地求出残差与其标准差的比值,因此,任何超过3个标准差的情况都可以被视为异常值。...但这种非黑即白的信息一般是不够的。因此,我们应该检查偏态和峰度,以了解分布的分散性。 首先,我们将计算偏态;我们将使用一个简单的高尔顿偏态(Galton’s skewness)公式。...将其与绘制拟合y-hat值与y值进行比较。当y-hat值趋于落后时,残差似乎与y共同增长,故此,因为过去的残值似乎继续沿着固定的坡度值运行,过去的残值似乎是当前值的更好预测因子。...同样,以矩阵形式表示的y具有尺寸[n,1],因此y-hat[j]表示为矩阵,因为它是两个矩阵(w和y)的乘积,并且具有与y相同的尺寸[n,1]。...显然,权重的最小可能值等于所有原始Y值贡献相等的可能性(因为它们必须为线性回归程序贡献一些东西,通过对所有观测进行工作和优化来估计系数)。 在这种情况下,其值域的下限为1/n,其中n是观测总数。

11.4K41

计算机视觉怎么给图像分类?KNN、SVM、BP神经网络、CNN、迁移学习供你选(附开源代码)

所以在我们的实现操作中,第一层是保存图像,然后我们构建了3个具有2×2最大池和修正线性单元(ReLU)的卷积层。 输入是一个具有以下尺寸的四维张量: 图像编号。 每个图像的Y轴。 每个图像的X轴。...每个图像的通道。 输出是另一个四维张量,具有以下尺寸: 图像号,与输入相同。 每个图像的Y轴。如果使用的是2×2池,则输入图像的高度和宽度除以2。 每个图像的X轴。同上。 由卷积滤波器产生的通道。...从而我们发现图像尺寸越大,精度越好。但是,大的图像尺寸也会增加执行时间和内存消耗。所以我们终于决定图像尺寸为128x128,因为它不是太大,但同时也可以保证精度。...他们在具有多种类别的复杂图像的分类中并不具备良好的性能。但是,与随机猜测相比,他们确实做了一些改进,但这还远远不够。 基于此结果,我们发现为了提高准确性,必须采用一些深度学习的方法。...与方法1进行比较,我们可以看到:虽然CNN的结果过度拟合,但我们仍然会得到一个比方法1更好的结果。 第三种方法:重新训练 Inception V3。 整个训练进度不超过10分钟。

3.8K121
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    理解回归分析--机器学习与R语言实战笔记(第四章)

    lm(y1~x, Quartet) abline(lmfit, col="red") lmfit # ################# Call: lm(formula = y1 ~ x, data...summay函数可以给出摘要统计信息, 仅仅依靠R^2不能得出回归模型是否符合要求,往往使用经过调整的R^2进行无偏差的估计。...生成模型的诊断图 par(mfrow=c(2,2)) plot(lmfit) 左上,残差和拟合值的关联;右上,残差正态图;左下,位置-尺度图,残差和拟合值的平方根;右下,残差与杠杆值,杠杆值是衡量观测点对回归效果影响大小的度量...(Quartet$x)],col='red') 抛物线 rlm函数生成稳健线性回归模型 plot(Quartet$x, Quartet$y3) library(MASS) lmfit和重尾;左上,残差和线性预测值,发现非常数的误差方差;左下是残差的直方图,发现非正态分布;右下为响应和拟合值图。

    97210

    Deep learning with Python 学习笔记(1)

    (叫作广播轴),使其 ndim 与较大的张量相同 将较小的张量沿着新轴重复,使其形状与较大的张量相同 a = np.array([[2, 2], [1, 1]]) c = np.array([3,...转换方法有以下两种 填充列表,使其具有相同的长度,再将列表转换成形状为 (samples, word_indices)的整数张量,然后网络第一层使用能处理这种整数张量的层 对列表进行 one-hot...举个例子,序列 [3, 5] 将会被转换为 10 000 维向量,只有索引为 3 和 5 的元素是 1,其余元素都是 0,然后网络第一层可以用 Dense 层,它能够处理浮点数向量数据 训练代码 from...可见训练损失每轮都在降低,训练精度每轮都在提升,但验证损失和验证精度并非如此,这是因为我们遇到了过拟合的情况,可以采用多种方法防止过拟合,如增加数据样本,减少训练次数,减少网络参数等 使用训练好的网络对新数据进行预测...将数据输入神经网络之前,一般我们都需要进行数据预处理,以使其与我们模型需要输入类型相匹配,包括 向量化 神经网络的所有输入和目标都必须是浮点数张量 值标准化 输入数据应该具有以下特征

    1.4K40

    化繁为简:从复杂RGB场景中抽象出简单的3D几何基元(CVPR 2021)

    特征Y等于Z,或者如果Z未知,则通过函数Y=fv (X)估计。函数fv通过具有参数v的神经网络实现。每个基元h∈M是一个具有可变大小和位姿的立方体。有关X、Y和M的处理流程示例,见图3。...A.特征提取: 为了将3D形状(例如立方体)拟合到RGB图像X中,必须从X中提取3D特征Y。这里使用深度估计器fv,它以像素深度图的形式为我们提供所需的特征Y=fv(X)。...图3给出了算法的概述,图6更详细地描述了采样和拟合阶段。 图6 采样和拟合:(1)使用采样权重Q对最小的特征集S⊂Y进行采样。(2)通过最小求解器fh内,初始化立方体参数h0。...然而,这些工作处理的是完整3D形状,而本文是将3D几何基元拟合到只有2.5D数据的真实场景中。因此,作者使用提出的遮挡感知距离度量(简称OA-L2)进行评估。...第一行:RGB输入图像。第二行和第三行:使用提出的方法获得的立方体(分别与原始图像和俯视图相同的视图)。颜色代表选择立方体的顺序,分别为:红色、蓝色、绿色、紫色、青色、橙色。

    46910

    TensorFlow2 keras深度学习:MLP,CNN,RNN

    model.fit(X_train, y_train, epochs=150, batch_size=32, verbose=0) 运行示例将首先报告数据集的形状,然后拟合模型并在测试数据集上对其进行评估...([row])print('Predicted: %.3f' % yhat)  运行示例首先报告数据集的形状,然后拟合模型并在测试数据集上对其进行评估。...我们将使用最近12个月的数据作为测试数据集。 LSTM期望数据集中的每个样本都具有两个维度。第一个是时间步数(在这种情况下为5),第二个是每个时间步的观测数(在这种情况下为1)。...在第一隐藏层和输出层之间插入一个具有50%滤除率的滤除层。...您可以对MLP,CNN和RNN模型使用批标准化。 下面的示例定义了一个用于二进制分类预测问题的小型MLP网络,在第一隐藏层和输出层之间具有批处理归一化层。

    2.2K30

    TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)

    model.fit(X_train, y_train, epochs=150, batch_size=32, verbose=0) 运行示例将首先报告数据集的形状,然后拟合模型并在测试数据集上对其进行评估...([row]) print('Predicted: %.3f' % yhat) 运行示例首先报告数据集的形状,然后拟合模型并在测试数据集上对其进行评估。...我们将使用最近12个月的数据作为测试数据集。 LSTM期望数据集中的每个样本都具有两个维度。第一个是时间步数(在这种情况下为5),第二个是每个时间步的观测数(在这种情况下为1)。...在第一隐藏层和输出层之间插入一个具有50%滤除率的滤除层。...您可以对MLP,CNN和RNN模型使用批标准化。 下面的示例定义了一个用于二进制分类预测问题的小型MLP网络,在第一隐藏层和输出层之间具有批处理归一化层。

    2.3K10

    在TensorFlow 2中实现完全卷积网络(FCN)

    用于图像分类和对象检测任务的预训练模型通常在固定的输入图像尺寸上训练。这些通常从224x224x3到某个范围变化,512x512x3并且大多数具有1的长宽比,即图像的宽度和高度相等。...这是一个有趣的原因,其原因如下: 调整图像大小容易使重要功能失真 预训练的架构非常庞大,并且总是过度拟合数据集 任务要求低延迟 需要具有可变输入尺寸的CNN 尝试了MobileNet和EfficientNet...尽管没有密集层可以输入可变的输入,但是有两种技术可以在保留可变输入尺寸的同时使用密集层。本教程描述了其中一些技术。...可以通过两种方式构建FC层: 致密层 1x1卷积 如果要使用密集层,则必须固定模型输入尺寸,因为必须预先定义作为密集层输入的参数数量才能创建密集层。...在使用两种配置构建和训练模型之后,这里是一些观察结果: 两种模型都包含相同数量的可训练参数。 类似的训练和推理时间。 密集层比1x1卷积的泛化效果更好。

    5.2K31

    R语言非线性方程数值分析生物降解、植物生长数据:多项式、渐近回归、米氏方程、逻辑曲线、Gompertz、Weibull曲线

    因此,使用包含R函数非常方便,这可以极大地简化拟合过程。 让我们加载必要的包。 library(nlme) 曲线形状 曲线可以根据其形状进行简单分类,这对于选择正确的曲线来研究过程非常有帮助。...在最大值/最小值处,响应为: R 中的多项式拟合 在 R 中,可以使用线性模型函数 'lm()' 进行多项式拟合。...我将同时展示EXD.2(蓝色曲线)和EXD.3(红色曲线)的示例。...,通常被称为“负指数方程”: 这个方程的形状与渐近回归类似,但当X=0时,Y=0(曲线通过原点)。...curve 如果b>1且为负数,曲线将呈现凹向上的形状,Y随着X的增加而增加。

    71460

    R语言非线性方程数值分析生物降解、植物生长数据:多项式、渐近回归、米氏方程、逻辑曲线、Gompertz、Weibull曲线

    因此,使用包含R函数非常方便,这可以极大地简化拟合过程。 让我们加载必要的包。 library(nlme) 曲线形状 曲线可以根据其形状进行简单分类,这对于选择正确的曲线来研究过程非常有帮助。...我们可以看到这种增加/减少不是恒定的,而是根据 X 的水平而变化。 在最大值/最小值处,响应为: R 中的多项式拟合 在 R 中,可以使用线性模型函数 'lm()' 进行多项式拟合。...我将同时展示EXD.2(蓝色曲线)和EXD.3(红色曲线)的示例。...,通常被称为“负指数方程”: 这个方程的形状与渐近回归类似,但当X=0时,Y=0(曲线通过原点)。...curve 如果b>1且为负数,曲线将呈现凹向上的形状,Y随着X的增加而增加。

    15410

    TensorFlow和深度学习入门教程

    它扩展了正常操作对具有不兼容尺寸的矩阵的作用范围。“广播添加”是指“如果要相加两个矩阵,但是由于其尺寸不兼容,请尝试根据需要复制小尺寸以使其能相加。”...小批量的尺寸是可调参数。还有另一个更技术的原因:使用大批量也意味着使用更大的矩阵,这些通常更容易在GPU上进行优化。 6. 实验室:让我们跳入代码 已经写了1层神经网络的代码。...保持训练图像的张量的形状是[None,28,28,1],代表: 28,28,1:我们的图像是每像素28x28像素x 1值(灰度)。彩色图像的最后一个数字将为3,这里并不需要。...有正规化技术,如丢失数据(dropout),可以强制它以更好的方式学习,但过拟合也有更深的根源。 当神经网络对于手头的问题具有太多的自由度时,会发生基本的过拟合。...要使用4x4的补丁大小和彩色图像作为输入生成一个输出值平面,如动画中那样,我们需要4x4x3 = 48的权重。这还不够 为了增加更多的自由度,我们用不同的权重重复相同的事情。 ?

    1.4K60

    ICCV2023 基准测试:MS-COCO数据集的可靠吗?

    该数据集是在数月内生成的,使用了不固定的人力资源:有时有多达500名标注员同时工作。关键点是有对标注员的进行详细指导。与MS-COCO数据集一样,标注以矢量多边形的形式提供。...图3 表面距离对匹配流程 形状分析 由于Sama-COCO是重新注释而非最初数据集的更正,所以样本之间没有对应关系。为了确定地分析注释形状的差异,必须首先匹配多边形。...这种策略可找到受轮廓噪声影响的匹配,而不是与全局框错误相关的匹配。对形状 x 和形状集 Y ,匹配定义为: 一旦找到匹配,则使用轮廓分析量化成对形状之间的差异。...设( \partial x,\partial y )表示成对形状( x,y )的轮廓,长度为( \|\partial x\|,\|\partial y\| )。...合并具有冲突标注风格的数据集可能是不明智的,因为神经网络的下游行为可能难以预测。 当我们查看检测和分割任务的评估指标差异时,可以明显看到网络从与训练数据集相同风格的评估中受益,如表1所示。

    54430

    R语言中的岭回归、套索回归、主成分回归:线性模型选择和正则化

    选择最佳模型 上面提到的三种算法中的每一种都需要我们手动确定哪种模型效果最好。如前所述,使用训练误差时,具有最多预测值的模型通常具有最小的RSS和最大的R ^ 2。...这种损失的作用是将系数估计值缩小到零。参数λ控制收缩的影响。λ= 0的行为与OLS回归完全相同。当然,选择一个好的λ值至关重要,应该使用交叉验证进行选择。...岭回归的要求是预测变量  X的  中心定为 mean = 0,因此必须事先对数据进行标准化。 为什么岭回归比最小二乘更好? 优势在偏差方差中显而易见  。随着λ的增加,脊回归拟合的灵活性降低。...固定的OLS回归具有较高的方差,但没有偏差。但是,最低的测试MSE往往发生在方差和偏差之间的交点处。因此,通过适当地调整λ获取较少的方差,我们可以找到较低的潜在MSE。...我们必须仅使用训练观察来执行模型拟合和变量选择的所有方面。然后通过将训练模型应用于测试或验证  数据来计算测试错误  。

    3.3K00

    盘点 | 对比图像分类五大方法:KNN、SVM、BPNN、CNN和迁移学习

    因此,在我们的实现中,第一层是保存图像,接着我们使用 2 x 2 最大池化和修正线性单元(ReLU)的构建 3 个卷积层。输入是 4 维张量: 图像序号。 每一图像的 Y 轴。 每一图像的 X 轴。...每一图像的通道(channel)。 输出是另一个 4 维张量: 图像序号,与输入相同。 每一图像的 Y 轴。如果使用 2x2 池化,接着输入图像的高和宽除以 2。 每一图像的 X 轴。同上。...在程序中有很多参数可以调整:在 image_to_feature_vector 函数中,我们设置的图片尺寸为 128x128,我们之前也尝试过使用其他尺寸(如 8x8、 64x64、256x256)进行训练...我们发现虽然图片的尺寸越大效果越好,但大尺寸的图片同样也增加了执行时间和内存需求。因此我们最后决定使用 128x128 的图片尺寸,因为其并不太大,同时还保证了准确度。...我们训练了 64x64 和 128x128 两种图片尺寸,结果表明尺寸越大模型精度就越高,但代价是运行时间会更长。 然后是神经网络层级数和它的形状。

    13.3K102

    Python Seaborn (4) 线性关系的可视化

    在最简单的调用中,两个函数绘制了两个变量 x 和 y 的散点图,然后拟合回归模型 y〜x 并绘制了该回归线的结果回归线和 95%置信区间: ? ?...()将数据集作为一个必需的参数,而 x 和 y 变量必须指定为字符串。...在这种情况下,解决方案是拟合逻辑 (Logistic) 回归,使得回归线显示给定值 x 的 y=1 的估计概率: ?...控制绘制的大小和形状 在我们注意到由 regplot()和 lmplot()创建的默认绘图看起来是一样的,但在轴上却具有不同大小和形状。...如果没有提供轴,它只需使用 “当前活动的” 轴,这就是为什么默认绘图与大多数其他 matplotlib 函数具有相同的大小和形状的原因。要控制大小,您需要自己创建一个图形对象。 ?

    2.1K20

    NumPy 基础知识 :1~5

    因此,现在y不再是x的视图/参考; 它是一个独立的数组,但具有与x相同的值。...广播和形状操作 NumPy 操作大部分是按元素进行的,这需要一个操作中的两个数组具有相同的形状。...x变量的形状为(3, 3),而y的形状仅为 3。但是在 NumPy 广播中,y的形状转换为1x3; 因此,该规则的第二个条件已得到满足。 通过重复将y广播到x的相同形状。 +操作可以按元素应用。...在前面的示例中,我们有一个形状为(24,1)的数组,更改了shape属性后,我们获得了一个相同大小的数组,但是形状已更改为2x3x4组成。 注意, -1的形状是指转移数组的剩余形状尺寸。...尽管x和y具有相同的形状,但y中的每个元素彼此相距 800 个字节。 使用 NumPy 数组x和y时,您可能不会注意到索引的差异,但是内存布局确实会影响性能。

    5.7K10

    三千字轻松入门TensorFlow 2

    要探索目标集中的类数,我们可以使用 ? ? 在这里,我们可以看到我们有3个类,每个类的标签分别为0、1和2。要查看标签名称,我们可以使用 ? ? 这些是我们必须预测的类的名称。...在这里,我们可以看到 X_train 和 X_test的 方差都非常低,因此无需对数据进行标准化。...注意,在第一层中,我们使用了一个额外的input_shape参数。此参数指定第一层的尺寸。在这种情况下,我们不关心训练示例的数量。相反,我们只关心功能的数量。...History回调具有一个名为history 的属性 ,我们可以将其作为history.histor y进行访问 ,它是具有所有损失和指标历史记录的字典,即,在我们的示例中,它具有loss, acc,...使用800个epoch将过度拟合数据,这意味着它将在训练数据上表现出色,但在测试数据上表现不佳。 在训练模型的同时,我们可以在训练和验证集上看到我们的损失和准确性。 ?

    55530

    从锅炉工到AI专家(6)

    同时应当很容易理解,用放大镜观看图像嘛,看到的局部,虽然是一副小图像,但色深等特征,跟原图是一模一样的。所以卷积的深度,同原图必然是相同的,本例中是灰度图,1个数据的深度。...如同DNN一样,卷积也可以逐层关联,去深入挖掘信息与信息之间的细微关系。而卷积这种特点也逐层传递,成为尺寸越来越小,但深度越来越深的形状。用示意图来看,很像一个金字塔,所以也称为“卷积金字塔”。...下面的部分,则是假设我们使用了步长为1,实际上得到的数据长宽尺寸,跟原图是相同的,而深度大大增加了。 这时候可以在卷积之后附加一层“池化”,以池化设置为2x2为例。...总之在本例中,输入的图像经过2x2的池化之后,图像的深度不变,尺寸会长、宽各缩减一倍,数据总量将减少4倍。 网络模型构建 同DNN一样,CNN的构建也没有什么必须的规则。...图的方向上进行, #所以为了使用这一层卷积,我们先要把x恢复成一组图, #2D加上第一维是样本数量,以及图的色深,是一个4d向量, #这里第2、第3维对应图片的宽、高, #最后一维代表图片的颜色通道数(

    51280

    深度学习基础入门篇9.1:卷积之标准卷积:卷积核特征图卷积计算、填充、感受视野、多通道输入输出、卷积优势和应用案例讲解

    如 图2 所示,空间位置相邻的两个点A和B,转化成1维向量后并没有体现出他们之间的空间关联性。 图片 图2 图片转换为1维向量 2. 模型参数过多,容易发生过拟合。...由于每个像素点都要跟所有输出的神经元相连接。当图片尺寸变大时,输入神经元的个数会按图片尺寸的平方增大,导致模型参数过多,容易发生过拟合。...而且在神经网络的计算中常常是把一个批次的样本放在一起计算,所以卷积算子需要具有批量处理多输入和多输出通道数据的功能。 6.1多输入通道场景 当输入含有多个通道时,对应的卷积核也应该有相同的通道数。...权重共享 卷积计算实际上是使用一组卷积核在图片上进行滑动,计算乘加和。因此,对于同一个卷积核的计算过程而言,在与图像计算的过程中,它的权重是共享的。...[1,1,50,50]) # 将numpy.ndarray转化成paddle中的tensor x = paddle.to_tensor(x) # 使用卷积算子作用在输入图片上 y = conv(x) #

    2K30
    领券