首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Yolov3损失函数如何随图像的分辨率变化?

Yolov3是一种目标检测算法,其损失函数在图像分辨率变化时会有所调整。具体来说,Yolov3的损失函数主要包括三个部分:分类损失、定位损失和目标置信度损失。

  1. 分类损失:Yolov3使用交叉熵损失来衡量目标的类别预测准确性。对于每个边界框,Yolov3会计算预测的类别概率与实际类别之间的交叉熵损失。这个损失与图像的分辨率无关,因为分类损失只与目标的类别预测相关。
  2. 定位损失:Yolov3使用均方差损失来衡量目标的位置预测准确性。对于每个边界框,Yolov3会计算预测的边界框坐标与实际边界框坐标之间的均方差损失。由于边界框坐标是相对于图像尺寸的比例值,所以定位损失会随着图像的分辨率变化而变化。
  3. 目标置信度损失:Yolov3使用二元交叉熵损失来衡量目标的置信度预测准确性。对于每个边界框,Yolov3会计算预测的目标置信度与实际目标置信度之间的二元交叉熵损失。与定位损失类似,目标置信度损失也会随着图像的分辨率变化而变化。

总的来说,Yolov3的损失函数在图像分辨率变化时会根据边界框坐标的比例值进行调整,以保持对目标检测的准确性。具体的调整方式可以通过调整损失函数中与边界框坐标相关的权重参数来实现。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云对象存储(COS):https://cloud.tencent.com/product/cos
  • 腾讯云人工智能(AI):https://cloud.tencent.com/product/ai
  • 腾讯云物联网(IoT):https://cloud.tencent.com/product/iotexplorer
  • 腾讯云移动开发(移动推送、移动分析等):https://cloud.tencent.com/product/mobile
  • 腾讯云数据库(云数据库MySQL、云数据库MongoDB等):https://cloud.tencent.com/product/cdb
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【目标检测】从YOLOv1到YOLOX(理论梳理)

YOLO系列应该是目标领域知名度最高的算法,其凭借出色的实时检测性能在不同的领域均有广泛应用。 目前,YOLO共有6个版本,YOLOv1-v5和YOLOX,除了YOLOv5外,其它都有相应的论文,5篇论文我已上传到资源中,可自行下载:https://www.aliyundrive.com/s/ofcnrxjzsFE 工程上使用最多的版本是YOLOv3和YOLOv5,Pytorch版本均由ultralytics公司开发,YOLOv5仍在进行维护,截至目前,已经更新到YOLOv5-6.1版本。 项目地址:https://github.com/ultralytics/yolov5 在上篇博文中,详细记录了如何用YOLOv5来跑通VOC2007数据集,本篇博文旨在对YOLO系列算法的演化进行简单梳理,更多详细的内容可以看文末的参考资料。

02
  • [Intensive Reading]目标检测(object detection)系列(八)YOLOv2:更好,更快,更强

    目标检测系列: 目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作 目标检测(object detection)系列(二) SPP-Net:让卷积计算可以共享 目标检测(object detection)系列(三) Fast R-CNN:end-to-end的愉快训练 目标检测(object detection)系列(四) Faster R-CNN:有RPN的Fast R-CNN 目标检测(object detection)系列(五) YOLO:目标检测的另一种打开方式 目标检测(object detection)系列(六) SSD:兼顾效率和准确性 目标检测(object detection)系列(七) R-FCN:位置敏感的Faster R-CNN 目标检测(object detection)系列(八) YOLOv2:更好,更快,更强 目标检测(object detection)系列(九) YOLOv3:取百家所长成一家之言 目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度 目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作 目标检测(object detection)系列(十二) CornerNet:anchor free的开端 目标检测(object detection)系列(十三) CenterNet:no Anchor,no NMS 目标检测(object detection)系列(十四)FCOS:用图像分割处理目标检测

    01

    改进YOLOv5的合成孔径雷达图像舰船目标检测方法

    针对合成孔径雷达图像目标检测易受噪声和背景干扰影响, 以及多尺度条件下检测性能下降的问题, 在兼顾网络规模和检测精度的基础上, 提出了一种改进的合成孔径雷达舰船目标检测算法。使用坐标注意力机制, 在确保轻量化的同时抑制了噪声与干扰, 以提高网络的特征提取能力; 融入加权双向特征金字塔结构以实现多尺度特征融合, 设计了一种新的预测框损失函数以改善检测精度, 同时加快算法收敛, 从而实现了对合成孔径雷达图像舰船目标的快速准确识别。实验验证表明, 所提算法在合成孔径雷达舰船检测数据集(synthetic aperture radar ship detection dataset, SSDD)上的平均精度均值达到96.7%, 相比于YOLOv5s提高1.9%, 训练时收敛速度更快, 且保持了网络轻量化的特点, 在实际应用中具有良好前景。

    01

    干货 | 基于深度学习的目标检测算法综述(一)

    目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。从最初 2013 年提出的 R-CNN、OverFeat,到后面的 Fast/Faster R-CNN、SSD、YOLO 系列,再到 2018 年最近的 Pelee。短短不到五年时间,基于深度学习的目标检测技术,在网络结构上,从 two stage 到 one stage,从 bottom-up only 到 Top-Down,从 single scale network 到 feature pyramid network,从面向 PC 端到面向手机端,都涌现出许多好的算法技术,这些算法在开放目标检测数据集上的检测效果和性能都很出色。

    02

    干货 | 基于深度学习的目标检测算法综述(一)

    目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。从最初 2013 年提出的 R-CNN、OverFeat,到后面的 Fast/Faster R-CNN、SSD、YOLO 系列,再到 2018 年最近的 Pelee。短短不到五年时间,基于深度学习的目标检测技术,在网络结构上,从 two stage 到 one stage,从 bottom-up only 到 Top-Down,从 single scale network 到 feature pyramid network,从面向 PC 端到面向手机端,都涌现出许多好的算法技术,这些算法在开放目标检测数据集上的检测效果和性能都很出色。

    02

    综述 | 基于深度学习的目标检测算法

    导读:目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。从最初 2013 年提出的 R-CNN、OverFeat,到后面的 Fast/Faster R-CNN、SSD、YOLO 系列,再到 2018 年最近的 Pelee。短短不到五年时间,基于深度学习的目标检测技术,在网络结构上,从 two stage 到 one stage,从 bottom-up only 到 Top-Down,从 single scale network 到 feature pyramid network,从面向 PC 端到面向手机端,都涌现出许多好的算法技术,这些算法在开放目标检测数据集上的检测效果和性能都很出色。

    02

    [Intensive Reading]目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作

    目标检测系列: 目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作 目标检测(object detection)系列(二) SPP-Net:让卷积计算可以共享 目标检测(object detection)系列(三) Fast R-CNN:end-to-end的愉快训练 目标检测(object detection)系列(四) Faster R-CNN:有RPN的Fast R-CNN 目标检测(object detection)系列(五) YOLO:目标检测的另一种打开方式 目标检测(object detection)系列(六) SSD:兼顾效率和准确性 目标检测(object detection)系列(七) R-FCN:位置敏感的Faster R-CNN 目标检测(object detection)系列(八) YOLOv2:更好,更快,更强 目标检测(object detection)系列(九) YOLOv3:取百家所长成一家之言 目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度 目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作 目标检测(object detection)系列(十二) CornerNet:anchor free的开端 目标检测(object detection)系列(十三) CenterNet:no Anchor,no NMS 目标检测(object detection)系列(十四)FCOS:用图像分割处理目标检测

    02

    目标检测|YOLOv2原理与实现(附YOLOv3)

    在前面的一篇文章中,我们详细介绍了YOLOv1的原理以及实现过程。这篇文章接着介绍YOLOv2的原理以及实现,YOLOv2的论文全名为YOLO9000: Better, Faster, Stronger,它斩获了CVPR 2017 Best Paper Honorable Mention。在这篇文章中,作者首先在YOLOv1的基础上提出了改进的YOLOv2,然后提出了一种检测与分类联合训练方法,使用这种联合训练方法在COCO检测数据集和ImageNet分类数据集上训练出了YOLO9000模型,其可以检测超过9000多类物体。所以,这篇文章其实包含两个模型:YOLOv2和YOLO9000,不过后者是在前者基础上提出的,两者模型主体结构是一致的。YOLOv2相比YOLOv1做了很多方面的改进,这也使得YOLOv2的mAP有显著的提升,并且YOLOv2的速度依然很快,保持着自己作为one-stage方法的优势,YOLOv2和Faster R-CNN, SSD等模型的对比如图1所示。这里将首先介绍YOLOv2的改进策略,并给出YOLOv2的TensorFlow实现过程,然后介绍YOLO9000的训练方法。近期,YOLOv3也放出来了,YOLOv3也在YOLOv2的基础上做了一部分改进,我们在最后也会简单谈谈YOLOv3所做的改进工作。

    04
    领券