首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据挖掘!使用分析+AI进行保险欺诈检测 ⛵

通过查询语言进行可视化有助于分析大量数据并识别欺诈活动的模式。...典型的数据库如 Nebula Graph,我们本次的分析挖掘用到的数据集是 insurance claims 保险索赔数据,大家可以通过 ShowMeAI 的百度网盘地址下载。...使用分析+AI进行保险欺诈检测 『insurance claims 保险索赔数据集』⭐ ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub 欺诈典型案例查找欺诈性索赔...使用分析+AI进行保险欺诈检测 『insurance claims 保险索赔数据集』⭐ ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub具体的信息包括:...可以很清晰地看到:具有特征的模型表现出色节点级别特征效果非常好聚类特征对结果也有补充作用 总结对于关联型业务场景,我们可以查询、可视化和分析数据,构建有效的信息支撑更强大的商业欺诈方案,特别是对于试图通过复杂网络结构隐藏的欺诈活动

98541
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    AI数据分析:根据时间序列数据生成动态条形

    动态条形竞赛(Bar Chart Race)是一种通过动画展示分类数据随时间变化的可视化工具。它通过动态条形的形式,展示不同类别在不同时间点的数据排名和变化情况。...制作动态条形竞赛的方法有很多,其中一些常见的工具和库包括: Highcharts:可以使用Highcharts库来创建动态条形竞赛,利用其数据排序和动画功能。...在chatpgt中输入提示词: 你是一个Python编程专家,要写一个Python脚本,具体步骤如下: 读取Excel文件内容:"F:\AI自媒体内容\AI行业数据分析\toolify月榜\toolify2023...年-2024年月排行榜汇总数据 - .xlsx" Excel表格的A列为”AI应用”,B列到O列为”AI应用”在每个月份的网站访问月流量 ; 基于表中数据,做一个动态条形竞赛(Bar Chart Race...自媒体内容\\AI行业数据分析\\toolify月榜\\toolify2023年-2024年月排行榜汇总数据 - .xlsx" print(f"读取Excel文件: {file_path}") data

    11010

    数据产品的竞品分析怎么做

    有和一些产品经理交流过关于竞品分析的体会,他们的问题相信你也曾经遇到过。 一、数据产品竞品分析的困惑 何时做分析,需求评审时却经常被开发或领导Diss,你知道竞品是怎么做的么?...竞品分析究竟什么时候、以什么样的频次去做呢? 竞品找不到,数据产品一般面向企业内部用户,因数据安全、商业机密等因素,内部产品资料很少对外共享。...还是以BI为例,tableau、帆软等传统的BI发展多年,QuickBI、观远数据在智能应用有更多的尝试,BI和AI结合的思想是不是可以学习和借鉴呢。...三、总结:数据产品竞品四要三不要 竞品分析的文章很多,本文主要结合数据产品的特性分享数据产品竞品分析的技巧,除了讲到的五个步骤三个方法外,还有几点建议,希望对你未来的数据产品工作有所帮助: 四要: 要养成定期做竞品分析的习惯...不要罗列功能缺少洞见,知道竞品是做什么的有什么功能不是目标,重要的是优缺点判断以及你准备怎么做的结论。 在做竞品分析过程中,你最常用的分析方法是什么,分析过程曾遇到过哪些困惑,是如何解决的呢?

    1.4K21

    提升DAU,数据分析怎么做

    DAU涨啦,DAU又降啦; DAU又涨了,DAU又降啦…… 大量数据分析师的工作,就消耗在这种无聊的叨叨中。更糟糕的是:很多涨跌,只是单纯的开发埋点没做好,数据丢失等脑残问题导致的,没啥有价值发现。...数据分析师只能颤颤巍巍的答道:要!搞!高! 今天系统讲解下,这个僵局怎么破。...问题在于: 第一:这些手段运营自己都知道,根本不需要数据分析 第二:手段真管用?...大部分都是“人走茶凉”型的,治标不治本 那么,站在数据分析角度,如何摆脱像布谷鸟一样,每天喊“涨啦,跌啦”,真正分析出解决问题的关键呢?...数据分析的价值,在于在盲目推广中,找到更多刚性需求,从而降低成本,用更贴近用户需求的方法保持活跃。 只不过这样做,需要商品/活跃/优惠/内容/用户等方面,大量的基础数据建设。

    70330

    提升DAU,数据分析怎么做

    以下文章来源于接地气学堂 ,作者接地气的陈老师 DAU涨啦,DAU又降啦; DAU又涨了,DAU又降啦…… 大量数据分析师的工作,就消耗在这种无聊的叨叨中。...更糟糕的是:很多涨跌,只是单纯的开发埋点没做好,数据丢失等脑残问题导致的,没啥有价值发现。 当业务方来问:那我要拉升DAU,能做啥? 数据分析师只能颤颤巍巍的答道:要!搞!高!...问题在于: 第一:这些手段运营自己都知道,根本不需要数据分析 第二:手段真管用?...大部分都是“人走茶凉”型的,治标不治本 那么,站在数据分析角度,如何摆脱像布谷鸟一样,每天喊“涨啦,跌啦”,真正分析出解决问题的关键呢?...数据分析的价值,在于在盲目推广中,找到更多刚性需求,从而降低成本,用更贴近用户需求的方法保持活跃。 只不过这样做,需要商品/活跃/优惠/内容/用户等方面,大量的基础数据建设。

    86020

    数据分析怎么做才够“精准”

    “用数据分析,精准定位用户,精准发现用户需求,精准推荐产品”是很多很多地方都在吹的故事。...好在互联网平台能记录数据,这也就是通过数据实现精准分析的前提。 ? 因此,精准不是一个绝对值,而是一个相对概念。...6 实现精准分析的步骤 正因为影响精准度的环节有很多,所以在实际开展项目的时候,一定要先清晰精准的目标,梳理业务流程,了解当前数据现状,了解业务方能在业务流程里做哪些事。...数据分析实现精准是需要过程,需要时间,需要经验积累的。把明显的问题先处理好,不然有太多的细节可以让人沉迷,最后也看不到效果改进。 这里做数据的新手很容易犯一个问题,就是:不看场景,直接怼模型。...所以业务方不要企图在精准营销之类工作中当甩手掌柜,认真的分享营销计划、投入费用、作战意图、内容创作、和数据分析共创,才是更好的提升之道。

    70930

    数据分析怎么做才能“可执行”

    数据分析师作为第三方角色,可以输出更有说服力的答案。...站在数据分析角度,关注的不是某个具体idea,而是哪个套路更管用。所谓:方向不对,努力白费。结合数据,找到更好的套路,才是数据分析的作用方式。 想找套路,就要先研究套路。...这里需要数据分析师对常用的业务套路所有了解。比如在线课程,是有常用推广方式的: ?...当然,这种层层递进的逻辑方法,也是数据分析的短板。从经验上看,数据分析师做的方案往往倾向于保守,往往缺少创意,这些都是太过理性的后遗症。而实际上商业成功往往不是理性的结果。...然而,数据分析的独特吸引力也在这里。你会发现创意、机智、魅力是天生的,权力、运气可遇不可求的,胆识加在蠢人身上就是灾难。唯独数据分析能力是可以通过学习、训练、实验、记录来不断提升的。

    65410

    AI数据分析:用deepseek根据Excel数据绘制分裂饼形

    工作任务:要绘制下面表格中月活用户占比的分裂饼形 在deepseek中输入提示词: 你是一个Python编程专家,要完成一个Python脚本编写的任务,具体步骤如下: 读取Excel文件"F:\AI自媒体内容...\AI行业数据分析\poetop50bots中文翻译.xlsx", 用matplotlib绘制一个分裂饼形: 从A列“热门bot名称”中提取数据作为标签,用于饼的各个扇区; E列“月活用户占比”中提取数据作为大小...设置matplotlib默认字体为'SimHei',文件路径为:C:\Windows\Fonts\simhei.ttf 保存图片到文件夹“F:\AI自媒体内容\AI行业数据分析”,图片标题为:poetop50bots...自媒体内容\AI行业数据分析\poetop50bots中文翻译.xlsx" df = pd.read_excel(file_path) # 从A列“热门bot名称”中提取数据作为标签 labels =...') # 确保x轴和y轴的刻度一致,从而使饼保持圆形 ax.axis('equal') # 保存图片到文件夹 plt.savefig(r"F:\AI自媒体内容\AI行业数据分析\poetop50bots.png

    13510

    数据分析,该怎么做才能超出预期?

    有同学问:每次做的数据分析报告,业务方看了不是说“我早知道了”,就是说“你这不符合业务常识”。搞得人很郁闷。...比如最近一次,诊断业绩波动问题,分析了一堆流量*转化率*客单价数据,业务方却哈哈大笑,说跟这些都没关系,纯粹是大区经理的能力问题。面对这种局面该怎么办? _(¦3)∠)_ 今天统一解答一下。...很有可能在数据分析中根本回应不到这些结论,或者简单的鹦鹉学舌再重复一遍,这就会导致开篇的:“我早知道了”、“不符合业务常识”等问题。所以进行事先沟通,了解情况非常重要。...虽然嘴上不说,但内心里还是会认可分析的价值。 从问题出发,到行动结束 上边只是个简单的例子,还有更多可以深入的地方。有些同学看了会说:老师,这些看数据的维度,我们BI里也有。是滴,罗列数据是很简单的。...做数据分析,要从具体问题出发,到一个指向业务的行动结束。想要超出业务期望,当然得了解具体业务期望是什么,解答他们的问题,帮他们发现更深层的问题。

    56910

    SEO工作中怎么做数据分析

    数据分析是SEO优化中一项非常重要的工作,数据分析是以现有网站的内容为基础,分析那些内容是用户点击比较多以及哪些内容用户更加受欢迎。从而更多展示用户喜欢的内容,降低网站的跳出率增加网站黏性。...数据分析能从很大程度上促进网站关键词排名。 1:发现问题。数据分析的前提是发现问题,如果只是盲目的寻找不同是难以发现数据体现的问题的。...关于网站的各种问题都可以提出然后带着问题去分析数据。 2:分析pv、uv、ip、跳出率和平均访问时长 pv、uv、ip是互相关联的。...5:分析页面点击和页面上下游 页面点击直观形象的展示用户的点击习惯,用户点击越多的地方颜色越趋向于深红色,浅一点的地方是绿色。...页面上下游反应的是用户从一个页面到另一个页面的浏览轨迹,页面上下游可以用谷歌分析工具分析。 (1)页面点击,可以根据页面点击调整网站首页布局。

    48630

    数据分析,该怎么做才能超出预期?

    有同学问:每次做的数据分析报告,业务方看了不是说“我早知道了”,就是说“你这不符合业务常识”。搞得人很郁闷。...比如最近一次,诊断业绩波动问题,分析了一堆流量*转化率*客单价数据,业务方却哈哈大笑,说跟这些都没关系,纯粹是大区经理的能力问题。面对这种局面该怎么办? _(¦3)∠)_ 今天统一解答一下。...很有可能在数据分析中根本回应不到这些结论,或者简单的鹦鹉学舌再重复一遍,这就会导致开篇的:“我早知道了”、“不符合业务常识”等问题。所以进行事先沟通,了解情况非常重要。...虽然嘴上不说,但内心里还是会认可分析的价值。 从问题出发,到行动结束 上边只是个简单的例子,还有更多可以深入的地方。有些同学看了会说:老师,这些看数据的维度,我们BI里也有。是滴,罗列数据是很简单的。...做数据分析,要从具体问题出发,到一个指向业务的行动结束。想要超出业务期望,当然得了解具体业务期望是什么,解答他们的问题,帮他们发现更深层的问题。

    43120

    toB和toC业务,数据分析怎么做

    很多同学很疑惑:为什么我做的数据分析和别人讲的差别那么大???有一个重要的原因,是数据分析的问题场景不一样。...而很多toB企业的数字化程度很低,沟通过程基本都靠销售自己完成,导致过程数据严重缺失。数据缺失,自然导致数据分析师很难分析出啥东西了。 其次,在toC业务里,线上业务和线下业务是两大有差异场景。...线下业务数据量很少,很多时候,连基础的RFM分析都做不了(因为没有用户ID),相当多的线下业务,是基于订单、工单、采购单等单据进行分析的,这一点让习惯了线上数据的同学们非常难受。...数据来源,运营方式,分析思路都不同。 所以,想做数据分析做得深入,具体问题,具体分析这八个字是非常重要的。具体到一个业务场景里,就容易讨论清楚。...如果只浮于表面,光说:“数据分析就是做对比”,谁跟谁比,比啥指标,比出来差异又咋解释,一窍不通,自然不能分析出好结果。

    88351

    数据分析,该怎么做才能超出预期?

    有同学问:每次做的数据分析报告,业务方看了不是说“我早知道了”,就是说“你这不符合业务常识”。搞得人很郁闷。...比如最近一次,诊断业绩波动问题,分析了一堆流量*转化率*客单价数据,业务方却哈哈大笑,说跟这些都没关系,纯粹是大区经理的能力问题。面对这种局面该怎么办? _(¦3)∠)_ 今天统一解答一下。...很有可能在数据分析中根本回应不到这些结论,或者简单的鹦鹉学舌再重复一遍,这就会导致开篇的:“我早知道了”、“不符合业务常识”等问题。所以进行事先沟通,了解情况非常重要。...虽然嘴上不说,但内心里还是会认可分析的价值。 从问题出发,到行动结束 上边只是个简单的例子,还有更多可以深入的地方。有些同学看了会说:老师,这些看数据的维度,我们BI里也有。是滴,罗列数据是很简单的。...做数据分析,要从具体问题出发,到一个指向业务的行动结束。想要超出业务期望,当然得了解具体业务期望是什么,解答他们的问题,帮他们发现更深层的问题。

    48230

    APT取证分析怎么做

    与其他普通网络攻击不同,APT攻击的取证分析更为复杂,一般可以按照以下几个步骤来进行:1、收集取证数据:收集与攻击有关的日志文件、网络流量数据、文件系统快照、内存镜像等数据。...2、鉴别数据源:根据收集到的数据,鉴别其来源,例如是来自于网络流量、应用程序日志还是文件系统。然后将这些数据进行分类,并进行分析。...3、数据分析:对于从数据源中提取出来的数据进行分析,可以分析网络流量,检查网络连接、流量大小、流量方向和协议类型,以识别潜在的攻击流量和命令与控制(C&C)通信。...此外,APT攻击的取证分析需要具备以下技能:1、熟悉网络安全知识:需要具备深入的网络安全知识,了解APT攻击的行为和特征,能够通过分析网络流量、应用程序日志和文件系统等数据来识别APT攻击。...2、熟悉操作系统和网络设备:需要熟悉被攻击系统的操作系统和网络设备,了解其日志格式和数据结构,能够根据日志数据分析攻击行为。

    56220

    堆积柱形_excel堆叠分层怎么做

    今天我们用report service 开发堆积,先上个,见上方。 1.新建rdlc文件,工具箱图片,新建一个图标类型(三维堆积圆柱),然后把三维效果去掉就0了。...2.绑定数据源(事先最好新建一个xsd文件,专门用来做报表用。),新建一个查询,模拟字段类型就好了,不用真的去接数据库。...(SELECT ” NAME,0 FLOW11,0 FLOW12,0 FLOW13,0 FLOW21,0 FLOW22,0 FLOW23,0 FLOW31,0 FLOW32,0 FLOW33),到时候数据源跟这个一直就行了...既然数据源有了,虽然是假得,呵呵。 把横坐标选中,把类别名拖到最下面就可以了。这里我们选择name,就是类别。 4.把要显示字段全部绑定上,就是这9段分类。看下图,比较丑,全部堆在一起!

    90020

    数据分析怎么做才能有前瞻性

    其实只有一年的数据完全不说明问题,但是人们就是会很惯性的认为:过去跌的就一定跌,过去涨的就一定涨,特别出现这种5432顺序排列的数据,惯性的就会认为下个数字是1……其实这正是数据分析要打倒的大敌。...所以单纯用惯性思维判断,完全没有体现数据分析的价值,做的结论还极有可能是错误的。 错误三:习以为常。...还是上图数据,很多同学看了三年趋势,然后脱口而出:因为过去6月份会涨,所以今年6月份也会涨……这种说法,很有可能被业务评价为:我早知道了!你分析了啥!...虽然没有精确的数据或模型,但是能通过分析,判断未来走势(相对应的,建数据模型详细计算的是定量预测)。 做预测的关键,是找到影响未来的因素。这些影响因素,才是支撑指标曲线的真正支柱。...比如很多做数据分析的同学只看数据类文章,公众号只关注《数据分析XX》《数据挖掘XX》《python XX》反而每天沉迷在数字和代码里,对行业发生了什么看都看不到很容易被批了。

    1.1K20

    Python数据分析--雷达

    最近阅读学习了林骥老师的《数据分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 引用林骥老师关于雷达的使用场景: 雷达的背景一圈一圈地像雷达,用多边形来展现数据的大小...endpoint=False) # 增加第一个 angle 到所有 angle 里,以实现闭合 angles = np.concatenate((angle, [angle[0]])) # 倒转顺序,以让雷达顺时针显示...set_thetagrids(angles*180/np.pi, labels=label) ax2.set_thetagrids(angles*180/np.pi, labels=label) # 画雷达

    1.4K10

    绘图技巧 | 这种精美的”排序怎么做?(附练习数据

    今天小编给大家介绍一种”凹凸(bump charts)“的绘制方法,其绘图函数主要来自R包-ggbump,本期的主要内容如下: R-ggbump包基本绘图简介 R-ggbump包实例演示 R-ggbump...包基本绘图函数简介 R-ggbump包主要包含:geom_bump()和geom_sigmoid(),两个函数主要绘制随时间变化的平滑曲线排名,内置参数也几乎相同,如下: ( mapping = NULL...Example Of geom_sigmoid() 从以上也可以看出两个绘图函数所绘制的图形属于同一类别,下面我们通过实例数据进行两个绘图函数的理解。...Exercise Of geom_bump() 「样例二:」 第二个小例子,我们通过构建虚拟数据进行可视化结果绘制,如下: #读入数据 library(readxl) df<-read_excel("...此外,小编还建议大家熟悉下用于定制化图表的相关语句哦,当然,如果喜欢用主题那就另当别论了哈~~ 数据获取 整理不易,感谢大家帮忙分享,关注本公众号(DataCharm)然后在公众号后台发送 练习数据06

    1.1K30
    领券