; 8 import android.util.Log; 9 import android.view.View; 10 import android.widget.Button; 11 import...android.widget.FrameLayout; 12 import android.app.Activity; 13 import android.content.Context; 14...48 }); 49 } 50 }); 51 } 52 53 /** 检测设备是否存在...; import android.hardware.Camera; import android.util.Log; import android.view.SurfaceHolder; import...> android="http://schemas.android.com/apk/res/android" android:orientation="horizontal
检查功能是否支持 在开启人脸检测功能之前,必须检查一下该摄像头是否支持人脸检测,通过接口: // 如果返回0,则表示不支持 Parameters#getMaxNumDetectedFaces() 开启.../停止人脸检测 开启和停止人脸检测都是直接调用Camera对象提供的接口即可,使用起来是非常简单的,需要注意的是两个接口需要在预览期间调用,即启动预览后才能开启人脸检测,停止预览前关闭人脸检测 ?...在相机类app中,可以观察到在手动对焦和拍照的时候会停止绘制人脸框。...拍照期间会停止预览,所以也不会有人脸的回调,在拍照结束,调用startPreview后,还必须再调用一次开启人脸检测的方法来重新进行人脸检测 人脸识别回调 通过向Camera注册FaceDetectionListener...,可以获取到检测的人脸结果 ?
人脸检测历险记 可能跟我一样,人脸检测是很多人学习图像处理的第一个自驱动型的任务,OpenCV刚上手没几天可能就想先跑一跑人脸检测,然后一个坑接着一个坑的往里跳。...上面用的是深度学习模型的人脸检测,但是在此之前还是稍微回顾下OpenCV自带的人脸检测器。...OpenCV自带的人脸检测 OpenCV自带了基于级联分类器的人脸检测模型,只能检测正脸,在前深度学习时代,效果已经是很好的了。...基于深度学习的人脸检测 想要深入学习的小伙伴可以尝试自己训练一个人脸检测模型练手,这里直接在Github上找一个能跑的模型CenterFace。...人脸卡通化 仅仅是人脸检测,显得略微有些没意思,所以在人脸检测的基础上,加点其他的更有意思的东西,比如上次刚玩过的卡通化。
.imread("C:/Users/xpp/Desktop/Lena.png")#读取图像 detector=MTCNN() face_list=detector.detect_faces(img)#人脸检测与对齐...(img,keypoints["mouth_right"],1,(0,0,255),2) cv2.imwrite("C:/Users/xpp/Desktop/result.png",img) 算法:人脸检测是将人脸区域检测与人脸关键点检测放在了一起...P-Net:Proposal Net,实现人脸候选框提取 R-Net:Refine Net,在P-Net输出结果的基础上进一步去除错误的候选框 O-Net:Output Net,与R-Net类似,最终输出人脸
前边已经详细介绍过人脸检测,其实检测类都可以归属于同一类,毕竟换汤不换药!...无论是人脸检测还是笑脸检测,又或者是opencv3以后版本加入的猫脸检测都是一个原理,用的是detectMultiScale函数,其具体使用参考公众号历史文章中的人脸检测(一)——基于单文档的应用台程序即可...~ 笑脸检测用的还是那个函数(还是熟悉的味道!)...这里主要分两步来说: 1.加载人脸检测器进行人脸检测 2 加载笑脸检测器进行笑脸检测 其具体程序如下,可以实现对图片的检测,也可以调用摄像头对采集到的实时图像进行检测,需要完整项目的后台回复关键词...“笑脸检测”即可~ 关键部分程序如下: ?
本文主要介绍了一种简单的人脸检测方法,通过随机裁剪图像并训练神经网络来检测人脸。该方法可以用于小规模数据集的人脸检测,并且可以通过调整代码来适应不同大小的数据集...
不多说了,直接代码吧: 生成AFLW_ann.txt的代码,其中包含图像名称 和 图像中人脸的位置(x,y,w,h); ** AFLW中含有aflw.aqlite文件。...f: f.writelines("%s\n" % line for line in list_annotation) AFLW图片都整理到flickr文件下(含0,1,2三个文件),生成人脸的程序...(并且对人脸进行了左右镜像): import os from PIL import Image from PIL import ImageFile # ImageFile.LOAD_TRUNCATED_IMAGES
一行代码实现人脸检测,人脸关键点检测和戴口罩检测。...,人脸关键点检测和戴口罩检测,并将编译好的动态库和静态库部署在Android应用上,在Android设备上实现人脸检测,人脸关键点检测和戴口罩检测,所以本应不会使用到C++开发,可以只使用笔者提供的JNI...facekeypoints.nb这个是人脸关键点检测,检测到人脸之后,通过这个模型检测人脸关键点。maskclassifier.nb这个模型是口罩分类模型,检测到人脸之后,用这个识别是否戴口罩。...第一步笔者再训练一个性别分类和年龄模型,这样一个程序就可以同时实现人脸检测,人脸关键点检测、戴口罩检测和性别年龄识别等5个功能。...上实现人脸检测、关键点检测、口罩检测就大功告成了。
Dnn实时地进行人脸检测。...Dnn的人脸检测在《实践|OpenCV4.2使用DNN进行人脸检测二(视频篇)》文章中已经实现过,不过那个是在Windows平台下的,检测的方式基本就是按那个来的,这次是我们把其的部分代码移植了过来。...GIF动图 视频效果 划重点 从上面的效果很仔细的话可以看到,我们检测人脸到画上红色矩形框时偶尔会有延时的情况,这个在《Android JetPack组件CameraX使用及修改显示图像》中说过,我们在摄像机预览中上层加入了...还要注意的一点是加载的人脸检测的模型文件,因为要在NDK中加载并初始化,所以在程序中我们要考虑怎么拷模型文件先复制到Android设备本地,然后调用JNI的方法去加载模型文件。 代码部分 ?...这次改造了一下代码,把所有JNI的调用都放入一个类中,加入了initFaceDetector的初始化人脸检测和facedetector的人脸检测。
在android开发中, 在一些编辑个人信息的时候,经常会有头像这么一个东西,就两个方面,调用系统相机拍照,调用系统图库获取图片.但是往往会遇到各种问题: 1.oom 2.图片方向不对 3.activity...android.database.Cursor; import android.net.Uri; import android.provider.MediaStore; import android.widget.Toast...; //在onActivityResult方法中根据requestCode和resultCode来获取当前拍照的图片地址。...//注意:这里有个问题,在有些机型当中(如SamsungI939、note2等)遇见了当拍照并存储之后,intent当中得到的data为空: /** * data = null 的情况主要是由于拍照的时候横屏了...; import android.graphics.RectF; import android.media.ExifInterface; import android.net.Uri; import android.util.Log
方式进行预览拍照。...= null) { mCamera.stopPreview(); } } /** * 拍照 */ public static...R.id.btn_switch: switchCamera(); break; } } /** * 拍照..." android:layout_height="wrap_content" android:text="拍照" /> 至此,通过SurfaceView + Camera API 预览拍照功能已经实现。
人脸检测 Face Detector 人脸检测,是检测出图片中包含的正面人脸. 1.1....基于 CNN 的人脸检测 采用预训练的 CNN 模型进行图片中的人脸检测. 基于 CNN 模型比基于 HOG 特征模型的人脸检测准确度更高....人脸关键点检测 Face Landmark Detection 人脸关键点检测,首先需要检测出图片中的人脸,并估计人脸的关键点姿态(pose)....CNN 人脸框及人脸关键点检测 #!...,及人脸关键点检测,并显示结果.
import cv2 img=cv2.imread('C:/Users/xpp/Desktop/Lena.png')#原始图像 #步骤1:获取XML文件,加载人脸检测器 faceCascade=cv2...gray=cv2.cvtColor(img,cv.COLOR_BGR2GRAY)#将彩色图片转换为灰度图片 #步骤2:实现人脸检测 faces=faceCascade.detectMultiScale...(gray,scaleFactor=1.03,minNeighbors=3,minSize=(3,3))#人脸检测 #步骤3:打印检测到的人脸 print(faces) print("发现{0}个人脸"....format(len(faces))) #步骤4:在原图中标记检测到的人脸 for (x, y, w, h) in faces: #步骤5:绘制圆环,标记人脸 cv2.circle(img,(...waitKey() cv2.destroyAllWindows() [[192 163 168 168]] 发现1个人脸 算法:HEAR人脸检测是构造能够区分包含人脸实例和不包含人脸实例的分类器。
本文链接:https://blog.csdn.net/chaipp0607/article/details/100538930 简介 FaceBoxes是一个足够轻量的人脸检测器,由中国科学院自动化研究所和中国科学院大学的研究者提出...,旨在实现CPU下的实时人脸检测,FaceBoxes论文是《FaceBoxes: A CPU Real-time Face Detector with High Accuracy》。...FaceBoxes原理 设计理念 FaceBoxes针对模型的效率和检测的效果做了很多设计,效率方面希望检测器足够快,检测效果方面希望有更高的召回率,尤其是针对小脸的情况,基于此: 一个下采样足够快的backbone...对于一个目标检测或人脸检测模型来说,计算量高的很大一部分原因是输入图像尺寸大,图像分类任务中224是一个常用尺寸,而这个尺寸去做检测是几乎不可能的。...输出2因为RPN在做是不是目标的预测,而人脸检测中目标只有人脸一类,所以FaceBoxes的2是在预测是不是人脸。剩下的4边界框的四个值了。
本文链接:https://blog.csdn.net/chaipp0607/article/details/100578202 简介 SSH是一个用于人脸检测的one-stage检测器,提出于2017...年8月,在当时取得了state-of-art的效果,论文是《SSH: Single Stage Headless Face Detector》,SSH本身的方法上没有太多新意,更多的是在把通用目标检测的方法往人脸检测上应用...在每一路分支上最后都有一个Detection Module(它是多种卷积的组合,后面会详细说明),最后在Detection Module输出的特征图上,参考RPN的方法滑动输出两路分支,分别负责是不是人脸的置信度...这种跨层的信息融合在通用目标检测网络中很常见,比如YOLOv2里面那个奇怪的reorg操作,在SSH之后的文章中,也有很多使用了这种思想,比如YOLOv3和FPN。...Anchor设置 由于SSH用于人脸检测,它的Anchor选取和RPN有所区别,它将人脸默认为正方形,所以Anchor只有一种比例,1:1。
前言 前面的文章《Android通过OpenCV和TesserartOCR实时进行识别》我们已经搭好一个利用NDK方式实时处理摄像头数据的程序了,今天我们就在看看OpenCV中通过级联方式实时进行人脸检测...代码演示 为了减少前面环境搭建,我们直接用《Android通过OpenCV和TesserartOCR实时进行识别》项目,在这个基础上直接实现我们的人脸检测。...facedetector.h 头文件中写入加载训练文件(loadcascade)和人脸检测(detectorface)两个方法。 ?...人脸检测方法 转为灰度图 直方图均衡化 多尺度检测detectMultiScale 在源图上绘制检测的矩形 ?.../灰度图 cvtColor(src, gray, COLOR_BGRA2GRAY); //直方图均衡化 equalizeHist(gray, gray); //多尺度人脸检测
本次就来了解一下,如何通过OpenCV对人脸进行检测。 其中OpenCV有C++和Python两种,这里当然选用Python啦。 环境什么的,就靠大伙自己去百度了。.../ 01 / 图片检测 先来看一下图片检测,原图如下。 ? 是谁我就不说了。律师函,不存在的。 训练数据是现成的,利用现成的数据,通过训练进而来检测人脸。 代码如下。...img = cv2.imread(filename) # 转灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 进行人脸检测.../ 02 / 视频检测 视频用的抖音的上的视频。 这里只截取检测效果比较好的视频段作为例子。 毕竟训练数据的质量摆在那里,有的时候会出现一些错误。 如想提高检测的精度,便需要一个高质量的人脸数据库。...success and cv2.waitKey(1) == -1: # 读取数据 ret, img = cameraCapture.read() # 进行人脸检测
在上一篇的基础上修改即可:人脸检测——滑动窗口篇(训练和实现) !!!...= (img-m)/std''' return img def min_face(img, F, window_size, stride): # img:输入图像,F:最小人脸大小...F = 24 # 构建金字塔的比例 ff = 0.8 # 概率多大时判定为人脸?..._24-161800') # saver_cal_48.restore(sess, 'model/model_cal_48-10000') # 需要检测的最小人脸...detection", image) cv2.waitKey(10000) cv2.destroyAllWindows() sess.close() 检测结果
.xml文件路径为本地绝对路径,应用代码时需要修改。 代码如下: #include "opencv2/objdetect/objdetect.hpp" #in...
写在前面 工作原因,顺便整理 博文内容为一个 人脸检测服务分享 以打包 Docker 镜像,可以直接使用 服务目前仅支持 http 方式 该检测器主要适用低质量人脸图片识别 理解不足小伙伴帮忙指正,多交流...cnn检测人脸,通过 hopenet 开源项目确定人脸姿态,拿到头部姿态欧拉角,通过 拉普拉斯算子 拿到人脸模糊度,通过对mtcnn 三级网络和置信度,欧拉角阈值,模糊度设置阈值筛选合适人脸 详细见项目...O-Net还可以输出 人脸关键点的位置坐标。最终,O-Net提供了最终的人脸检测结果和人脸关键点的位置信息。...影响因子(原始图像的比例跨度)(scale_factor): MTCNN 使用了图像金字塔来检测不同尺度的人脸。通过对图像进行 缩放,可以检测到不同大小的人脸。...较小的影响因子会导致 更多的金字塔层级,可以检测到 更小的人脸,但会增加计算时间。较大的影响因子可以 加快检测速度,但可能会错过 较小的人脸。
领取专属 10元无门槛券
手把手带您无忧上云