首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从链表中删去总和值为零的连续节点(哈希表)

题目 给你一个链表的头节点 head,请你编写代码,反复删去链表中由 总和 值为 0 的连续节点组成的序列,直到不存在这样的序列为止。 删除完毕后,请你返回最终结果链表的头节点。...你可以返回任何满足题目要求的答案。 (注意,下面示例中的所有序列,都是对 ListNode 对象序列化的表示。)...示例 2: 输入:head = [1,2,3,-3,4] 输出:[1,2,4] 示例 3: 输入:head = [1,2,3,-3,-2] 输出:[1] 提示: 给你的链表中可能有 1 到 1000...对于链表中的每个节点,节点的值:-1000 表 建立包含当前节点的前缀和sum为Key,当前节点指针为Value的哈希表 当sum在哈希表中存在时,两个sum之间的链表可以删除 先将中间的要删除段的哈希表清除,再断开链表 循环执行以上步骤 ?

2.4K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    弃用 Lambda,Twitter 启用 Kafka 和数据流新架构

    对于交互和参与的管道,我们从各种实时流、服务器和客户端日志中采集并处理这些数据,从而提取到具有不同聚合级别、时间粒度和其他度量维度的 Tweet 和用户交互数据。...我们通过同时将数据写入 BigQuery 并连续查询重复的百分比,结果表明了高重复数据删除的准确性,如下所述。最后,向 Bigtable 中写入包含查询键的聚合计数。...在此期间,我们不必在多个数据中心维护不同的实时事件聚合。 评 估 系统性能评估 下面是两个架构之间的指标比较表。与旧架构中的 Heron 拓扑相比,新架构具有更低的延迟、更高的吞吐量。...此外,新架构还能处理延迟事件计数,在进行实时聚合时不会丢失事件。此外,新架构中没有批处理组件,所以它简化了设计,降低了旧架构中存在的计算成本。 表 1:新旧架构的系统性能比较。...聚合计数验证 我们将计数验证过程分成两个步骤。首先,我们在数据流中,在重复数据删除之前和之后,对重复数据的百分比进行了评估。

    1.7K20

    【Leetcode -1171.从链表中删去总和值为零的连续节点 -1669.合并两个链表】

    Leetcode -1171.从链表中删去总和值为零的连续节点 题目:给你一个链表的头节点 head,请你编写代码,反复删去链表中由 总和 值为 0 的连续节点组成的序列,直到不存在这样的序列为止。...删除完毕后,请你返回最终结果链表的头节点。 你可以返回任何满足题目要求的答案。 (注意,下面示例中的所有序列,都是对 ListNode 对象序列化的表示。)...对于链表中的每个节点,节点的值: - 1000 两个链表 list1 和 list2 ,它们包含的元素分别为 n 个和 m 个。...= [1000000, 1000001, 1000002] 输出:[0, 1, 2, 1000000, 1000001, 1000002, 5] 解释:我们删除 list1 中下标为 3 和 4 的两个节点

    11410

    当Google大数据遇上以太坊数据集,这会是一个区块链+大数据的成功案例吗?

    但是,在这些应用中,并不存在能够轻松访问区块链数据的 API 端点,除此之外,这些应用中也不存在查看聚合区块链数据的 API 端点。...下图是18年上半年以太币的日常记录交易量和平均交易成本: 在公司的业务决策中,如上图这样的可视化服务(或基础数据库查询)就显得尤为重要,比如:为平衡资产负债表,应优先改进以太坊架构(比如是否准备更新),...BigQuery 平台具有强大的联机分析处理功能,一般来说,不需要借助额外的API实现,就可以很好支持以上这种业务决策。...取消按日期分区的数据规范,并将其存储在 BigQuery 平台上,进行简单且具有成本效益的探索。...线条的长度与Token的转移量成正比,Token转移量越大,图表中的钱包就越紧密。 Token地址之间的转移将会聚合在一个组中,从而与其他组区分开来。

    4K51

    ClickHouse 提升数据效能

    这些查询中的大多数都包含聚合,ClickHouse 作为面向列的数据库进行了优化,能够在不采样的情况下对数千亿行提供亚秒级响应时间 - 远远超出了我们在 GA4 中看到的规模。...lGoogle每天最多允许将100 万个事件批量导出到每日表中。这足以满足我们的需求并且低于我们当前的阈值。我们将来可能需要要求 Google 增加这一点。...l数据可以以流Schema导出到每日内表中并支持每日导出。日内“实时”表通常会滞后几分钟。最重要的是,这种导出没有限制!...我们知道 ClickHouse 将提供毫秒级响应时间,并且更适合平面Schema(只有两个表)和聚合密集型查询。...我们可以使用 gcs 函数和INSERT INTO SELECT将数据从 Parquet 文件插入到此Schema中。该语句对于两个表都是相同的。

    27710

    ClickHouse 提升数据效能

    这些查询中的大多数都包含聚合,ClickHouse 作为面向列的数据库进行了优化,能够在不采样的情况下对数千亿行提供亚秒级响应时间 - 远远超出了我们在 GA4 中看到的规模。...lGoogle每天最多允许将100 万个事件批量导出到每日表中。这足以满足我们的需求并且低于我们当前的阈值。我们将来可能需要要求 Google 增加这一点。...l数据可以以流Schema导出到每日内表中并支持每日导出。日内“实时”表通常会滞后几分钟。最重要的是,这种导出没有限制!...我们知道 ClickHouse 将提供毫秒级响应时间,并且更适合平面Schema(只有两个表)和聚合密集型查询。...我们可以使用 gcs 函数和INSERT INTO SELECT将数据从 Parquet 文件插入到此Schema中。该语句对于两个表都是相同的。

    33410

    谷歌发布 Hive-BigQuery 开源连接器,加强跨平台数据集成能力

    所有的计算操作(如聚合和连接)仍然由 Hive 的执行引擎处理,连接器则管理所有与 BigQuery 数据层的交互,而不管底层数据是存储在 BigQuery 本地存储中,还是通过 BigLake 连接存储在云存储桶中...BigQuery 是谷歌云提供的无服务器数据仓库,支持对海量数据集进行可扩展的查询。为了确保数据的一致性和可靠性,这次发布的开源连接器使用 Hive 的元数据来表示 BigQuery 中存储的表。...该连接器支持使用 MapReduce 和 Tez 执行引擎进行查询,在 Hive 中创建和删除 BigQuery 表,以及将 BigQuery 和 BigLake 表与 Hive 表进行连接。...它还支持使用 Storage Read API 流和 Apache Arrow 格式从 BigQuery 表中快速读取数据。...BigQuery 表读取到 Spark 的数据帧中,并将数据帧写回 BigQuery。

    34720

    ClickHouse 提升数据效能

    这些查询中的大多数都包含聚合,ClickHouse 作为面向列的数据库进行了优化,能够在不采样的情况下对数千亿行提供亚秒级响应时间 - 远远超出了我们在 GA4 中看到的规模。...lGoogle每天最多允许将100 万个事件批量导出到每日表中。这足以满足我们的需求并且低于我们当前的阈值。我们将来可能需要要求 Google 增加这一点。...l数据可以以流Schema导出到每日内表中并支持每日导出。日内“实时”表通常会滞后几分钟。最重要的是,这种导出没有限制!...我们知道 ClickHouse 将提供毫秒级响应时间,并且更适合平面Schema(只有两个表)和聚合密集型查询。...我们可以使用 gcs 函数和INSERT INTO SELECT将数据从 Parquet 文件插入到此Schema中。该语句对于两个表都是相同的。

    30110

    Grafana 监控面板绘制流程

    计算原理:rate 通过计算一个新的直方图来作用于原生直方图,其中每个分量(观测值的总和和计数,桶)是 v 中第一个和最后一个原生直方图中相应分量之间的增长率。 4....否则 rate() 无法在您的目标重新启动时检测到计数器重置。 2.2.2 irate 1. irate(v range-vector):计算范围向量中时间序列的每秒瞬时增长率(基于最后两个数据点)。...在右侧的 Value mappings 可以添加对应的映射:可以根据值、范围、正则和特殊值(空等)来控制其展示的文本,比如0代表离线,1代表上线,可以通过 value mappings 完成。...在右侧的 Thresholds 则是设置阈值,可以结合 Standard options 中的配色方案使用: a. 阈值设置:可以设置绝对阈值、相对阈值(和显示最大值、显示最小值有关)。...可以通过 Overrides 来重写部分时间序列的上述某些属性,支持通过名字、名字正则、类型和返回值重写: a. 重写的属性具有更高的优先级。 b.

    2.3K10

    HyperLogLog函数在Spark中的高级应用

    预聚合是高性能分析中的常用技术,例如,每小时100亿条的网站访问数据可以通过对常用的查询纬度进行聚合,被降低到1000万条访问统计,这样就能降低1000倍的数据处理量,从而在查询时大幅减少计算量,提升响应速度...本文,我们将介绍 spark-alchemy这个开源库中的 HyperLogLog 这一个高级功能,并且探讨它是如何解决大数据中数据聚合的问题。首先,我们先讨论一下这其中面临的挑战。...而 distinct counts 是特例,无法做再聚合,例如,不同网站访问者的 distinct count 的总和并不等于所有网站访问者的 distinct count 值,原因很简单,同一个用户可能访问了不同的网站...中 Finalize 计算 aggregate sketch 中的 distinct count 近似值 值得注意的是,HLL sketch 是可再聚合的:在 reduce 过程合并之后的结果就是一个...提供了大数据领域最为齐全的 HyperLogLog 处理工具,超过了 BigQuery 的 HLL 支持。

    2.6K20

    指标&监控&告警入门详解(一)

    我们要讨论它们的重要性,它们提供的机会,以及你可能希望监控的数据类型。过程中,我们会介绍一些关键术语,并以简短的词汇表总结和该领域相关的一些其它术语。 什么是指标,监控和告警?...来自环境各个部分的数据被收集到监控系统中,这个系统负责存储,聚合,可视化并在指标值达到特定阈值,满足特定条件时自动触发响应。 通常,指标和监控之间的差异可比作数据和信息之间的差异。...数据由未经处理的原始事实组成,而信息是通过对数据的分析和组织后,提供的具有上下文价值而产生的。监控通过对收集到的指标,进行聚合,以及从各不同的维度展示,使人们能够洞察到不同的信息。...这意味着监控系统需要能对一段时间内的数据进行管理,包括对历史数据的采样和聚合。 其次,监控系统通常具有数据可视化的能力。...告警是监控系统中的响应模块,它在指标值发生变化时执行操作。告警的定义由两个部分组成:基于指标的条件或阈值,以及当指标值超出设置的条件或阈值时需要执行的操作。

    2.2K21

    流式系统:第五章到第八章

    这两个聚合都写入了未指定的流式输出。 请记住,Dataflow 并行在许多不同的工作器上执行管道。...对 BigQuery 的重复尝试插入将始终具有相同的插入 ID,因此 BigQuery 能够对其进行过滤。示例 5-5 中显示的伪代码说明了 BigQuery 接收器的实现方式。 示例 5-5。...从图表的新流/表部分来看,如果我们所做的只是计算总和作为我们的最终结果(而不在管道中的下游实际上以任何其他方式转换这些总和),那么我们用分组操作创建的表中就有我们的答案,随着新数据的到来而不断演变。...即便如此,从分组中产生的聚合物件仍然静止在表中,而未分组的值流则从中流走。...实际上,正如我们在第二章中讨论的那样,对于具有两个或更多分组操作序列的任何查询/管道来说,它对于过度计数是明显错误的。

    73810

    要避免的 7 个常见 Google Analytics 4 个配置错误

    未设置数据保留期限 GA4 默认提供两个月的数据保留期,您可以选择将其设置为 14 个月。保留期适用于探索中的自定义报告,而标准报告中的数据永不过期。...未关联到 BigQuery 帐户 Universal Analytics 360 中提供了与 BigQuery 相关联的功能,但在免费版本中不可用。现在有了 GA4,所有用户都可以访问该高级功能。...与 GA4 自定义报告相比,BigQuery 具有很大的优势,因为从不对数据进行采样,而在自定义报告中,如果探索报告中的事件超过 10M 个,则会对数据进行采样。...但我想提一下,为什么根据您的业务案例选择正确的选项很重要。 如果您的网站上没有登录名和用户 ID,那么 99% 的情况都应该使用“基于设备”,因为其他两个选项可能会扭曲您的转化数据。...使用建模和观察选项时,您经常会注意到报告中的“应用了数据阈值”,这对数据准确性有影响。 您可以尝试在这些选项之间切换,看看您的数据是如何变化的。

    44610

    1年将超过15PB数据迁移到谷歌BigQuery,PayPal的经验有哪些可借鉴之处?

    此外,BigQuery 还具有机器学习和实时分析等高级特性,无需将数据移到另一个系统即可利用这些能力。 PayPal 之所以选择了云而非本地扩展是考虑到了多个因素。...图 1:PayPal 分析环境中的数据流高层视图 PayPal 在本地管理两个基于供应商的数据仓库集群,总存储量超过 20PB,为 3,000 多个用户提供服务。...源上的数据操作:由于我们在提取数据时本地系统还在运行,因此我们必须将所有增量更改连续复制到 BigQuery 中的目标。对于小表,我们可以简单地重复复制整个表。...由于我们正在逐步切换用户,因此我们必须意识到 BigQuery 中的表需要具有生产级质量。 数据验证:在数据发布给数据用户之前,需要对数据进行多种类型的数据验证。...这包括行计数、分区计数、列聚合和抽样检查。 BigQuery 的细微差别:BigQuery 对单个查询可以触及的分区数量的限制,意味着我们需要根据分区拆分数据加载语句,并在我们接近限制时调整拆分。

    4.7K20

    【书摘】SUMIF条件聚合:将行级别筛选和聚合分析合二为一

    从计算的角度,SUMIF表达式是建立在数据表行级别计算基础上的聚合计算。...如图8-50所示,这里的利润总和对应聚合计算SUM([利润])。...基于一个聚合度量的分年度显示方式,使得自定义调整变得异常困难。如果能把不同年度的聚合计算完全独立为两个字段,就可以增强布局的自由度。此时就需要“条件聚合”。...以这里的“条件聚合”为例,它的优势在于赋予了不同年度聚合字段极大的灵活性,而其弊端在于查询过程中较低的性能,同时难以维护,不具有可持续性(到了下一年度,计算需要重写)。...完成同环比的另一个思路则是引入窗口计算,将视图维度作为聚合值二次计算的依据,在SQL中称为窗口计算(Window Calculation),Tableau对应表计算(Table Calculation)

    9710

    智能分析工具PK:Tableau VS Google Data Studio

    Tableau工具 vs Google Data Studio 工具 Tableau 和 Google是两个软件供应商,两者都为数据可视化提供了一个易于使用的、可拖放的环境。...显然,Data Studio的本地连接器的列表是非常有限的,所以你会考虑将你的数据优先放到Google Sheets、 Google BigQuery、或者 Cloud SQL中。...2.计算器 这两种工具都提供了标准的聚合函数,比如平均值、计数、最大值、最小值、总和以及计数。 Data Studio提供了53个功能,包括聚合、算术、日期、地理、文本和其他功能。...Tableau提供了数字、文本、日期、类型转换、逻辑、聚合、用户和其他功能,以及表计算功能。总的来说,Tableau提供了超过150个功能。...Google Data Studio具有响应性设计和自动调整功能。若想手动设置仪表板在不同设备上的外观是无法实现的。 3.主题 Tableau提供了3个工作簿主题:默认、现代和经典。

    4.8K60
    领券