首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据扩充与数据预处理

    常用的数据扩充方式有:图像水平翻转(horizontally flipping)和随机扣取(random crops),随机抠取操作一般用较大(约 0.8 至 0.9 倍原图大小)的正方形  在原图的随机位置处抠取图像块(image patch/crop),每张图像随机抠取的次数决定了数据集扩充的倍数。其他的数据扩充方式还有尺度变换(scaling)、旋转(rotating)等,从而增加卷积神经网络对物体尺度和方向上的鲁棒性。  在此基础上,对原图或已变换的图像(或图像块)进行色彩抖动(color jittering)也是一种常用的数据扩充手段。色彩抖动是在 RGB 颜色空间对原有 RGB 色彩分布进行轻微的扰动,也可在 HSV 颜色空间尝试随机改变原有的饱和度和明度(即,改变 S 和 V 通道的值)或对色调进行微调(小范围改变该通道的值)。  在实际项目中,往往会将上述几种方式叠加使用,将图像数据扩充至原有数量的数倍甚至数十倍。

    02

    从matlab的bwmorph函数的'majority'参数中扩展的一种二值图像边缘光滑的实时算法。

    在matlab的图像处理工具箱中,有一系列关于Binary Images的处理函数,都是以字母bw开头的,其中以bwmorph函数选项最为丰富,一共有'bothat'、'branchpoints'、'bridge'、'clean'、'close'等十几个方法,其中像骨骼化、细化等常见的功能也集成在这个函数里,同常规的写法一样,这些算法都是需要迭代的,因此,这个函数也有个迭代次数的参数。那么另外一些算子,比如clean、diag、remove等等其实都是基于3*3或者5*5领域的,而其中的'erode'、'open'也只是基于3*3的,因此和真正的常用的腐蚀和膨胀还有所不同,那个需要使用imopen或者imclose实现。实际上,这些基于3*3或者5*5的小算子,他们对于二值图基本上就是用一次结果接没有变换,几迭代次数多了也没有啥用。那几个图测试下其中几个算子的效果:

    02
    领券