神经网络控制是20世纪80年代以来,在人工神经网络(Artificial Neural Networks,ANN)研究取得的突破性进展基础上发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的 非线性、不确定、不确知 系统的控制问题开辟了一条新的途径。
一、BP神经网络的概念 BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。具体来说,对于如下的只含一个隐层的神经网络模型: (三层BP神经网络模型)
BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。具体来说,对于如下的只含一个隐层的神经网络模型:
BP(Back-propagation,反向传播)神经网络是最传统的神经网络。当下的各种神经网络的模型都可以看做是BP神经网络的变种(虽然变动很大…)。 这东西是干什么用的呢? 我们在现实中要处理的一切问题映射到数学上只分为两类,可归纳的问题与不可归纳的问题。首先什么是不可归纳的问题,举个例子,你不能用一套完美的数学公式去表达所有的质数 , 因为目前的研究表明,还没有什么方法是能够表达质数的,也就是说,质数的出现,本身不具备严格的数学规律,所以无法归纳。 但是我们人眼看到猫猫狗狗的图片就很容易分辨哪个是猫,哪个是狗。这说明在猫和狗之间,确实存在着不同,虽然你很难说清楚它们的不同到底是什么,但是可以知道,这背后是可以通过一套数学表达来完成的,只是很复杂而已。 大部分AI技术的目的就是通过拟合这个复杂的数学表达,建立一个解决客观问题的数学函数。BP神经网络的作用也是如此。 BP神经网络这个名字由两部分组成,BP(反向传播)和神经网络。神经网络是说这种算法是模拟大脑神经元的工作机理,并有多层神经元构成的网络。 而这个名字的精髓在BP上,即反向传播。反向传播是什么意思呢。这里举个例子来说明。 比如你的朋友买了一双鞋,让你猜价格。 你第一次猜99块钱,他说猜低了。 你第二次猜101块钱,他说猜高了。 你第三次猜100块钱,他说猜对了。 你猜价格的这个过程是利用随机的数据给出一个预测值,这是一个正向传播。 而你的朋友将你的预测值与真实值进行对比,然后给出一个评价,这个过程是一个反向传播。 神经网络也是类似的过程,通过对网络的超参数进行随机配置,得到一个预测值。这是一个正向传播的过程。而后计算出预测值与真实值的差距,根据这个差距相应的调整参数,这是一个反向传播的过程。通过多次迭代,循环往复,我们就能计算出一组合适的参数,得到的网络模型就能拟合一个我们未知的复杂函数。 我们来看这个BP神经网络的示意图
一、前言 模拟退火、遗传算法、禁忌搜索、神经网络等在解决全局最优解的问题上有着独到的优点,其中共同特点就是模拟了自然过程。模拟退火思路源于物理学中固体物质的退火过程,遗传算法借鉴了自然界优胜劣汰的进化思想,禁忌搜索模拟了人类有记忆过程的智力过程,神经网络更是直接模拟了人脑。它们之间的联系也非常紧密,比如模拟退火和遗传算法为神经网络提供更优良的学习算法提供了思路。把它们有机地综合在一起,取长补短,性能将更加优良。 这几种智能算法有别于一般的按照图灵机进行精确计算的程序,尤其是人工神经网络,是对计算机模
前言:神经网络常常给人一种十分高深的感觉,让人觉得这是数学家或是IT工程师们才能学习的理论,普通人是难以掌握的。但当我们解决实际问题时并不需要完全掌握理论的原理,只需要“会用”即可。再加上MATLAB中强大的集成命令函数,让我们直接跳过“刀耕火种”的时代,直接使用BP神经网络算法进行预测。
BP神经网络现在来说是一种比较成熟的网络模型了,因为神经网络对于数字图像处理的先天优势,特别是在图像压缩方面更具有先天的优势,因此,我这一段时间在研究神经网络的时候同时研究了一下关于BP网络实现图像压缩的原理和过程,并且是在MATLAB上进行了仿真的实验,结果发现设计的BP神经网络具有不错的泛化能力,对于用于图像压缩方面的效果还不错. 1:BP神经网络的模型的架构和训练的原理 BP神经网络是现在目前的发展的比较成熟的神经网络之一了,也是一种比较给力的非线性的可微分函数进行权值修正和调整的多层前馈人工神经网络
转自: https://blog.csdn.net/lyl771857509/article/details/78990215
初学人工智能不久,今天碰上了人工神经网(ANN),开始学的时候很懵,一大堆理论、公式、推导…..作为一名小白,还是很痛苦的,不过经过摸索,大概了 解了什么是ANN,公式的推导以及一些其他问题,下面我就总结下自己的理解,一方面作为自己的笔记,日后方便巩固;另一方面,也可以分享给其他有意者。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_35512245/article/details/55224524
本文来源原文链接:https://blog.csdn.net/weixin_66845445/article/details/133828686
作者的话:这篇文章重点是讲清楚多层神经网络的计算过程和程序实现。 复杂海量数据的分布式计算,多层的训练的梯度衰减等问题,可以从本文基础上去进一步改进优化。层数多时,也有很多用ReLU代替Sigmoid函数,来改善前面隐含层的学习变化越来越弱的问题。 对于现在流行的深度学习,保持学习精神是必要的——程序员尤其是架构师永远都要对核心技术和关键算法保持关注和敏感,必要时要动手写一写掌握下来,先不用关心什么时候用到——用不用是政治问题,会不会写是技术问题,就像军人不关心打不打的问题,而要关心如何打赢的问题。 程序
接上一篇的最后,我们要训练多层网络的时候,最后关键的部分就是求梯度啦。纯数学方法几乎是不可能的,那么反向传播算法就是用来求梯度的,用了一个很巧妙的方法。 反向传播算法应该是神经网络最基本最需要弄懂的方法了,要是反向传播方法不懂,后面基本上进行不下去。 非常推荐的是How the backpropagation algorithm works 在最开始的博客中提过,这本书是这篇笔记用到的教材之一,这节反向传播也是以上面那个链接中的内容作为笔记的,因为反向传播部分写的很好。
BP神经网络是一种通过误差反向传播算法进行误差校正的多层前馈神经网络,其最核心的特点就是:信号是前向传播,而误差是反向传播。前向传播过程中,输入信号经由输入层、隐藏层逐层处理,到输出层时,如果结果未到达期望要求,则进入反向传播过程,将误差信号原路返回,修改各层权重。
一直沿用至今的“M-P神经元模型”正是对这一结构进行了抽象,也称“阈值逻辑单元“,其中树突对应于输入部分,每个神经元收到n个其他神经元传递过来的输入信号,这些信号通过带权重的连接传递给细胞体,这些权重又称为连接权(connection weight)。细胞体分为两部分,前一部分计算总输入值(即输入信号的加权和,或者说累积电平),后一部分先计算总输入值与该神经元阈值的差值,然后通过激活函数(activation function)的处理,产生输出从轴突传送给其它神经元。M-P神经元模型如下图所示:
BP神经网络现在来说是一种比较成熟的网络模型了,因为神经网络对于数字图像处理的先天优势,特别是在图像压缩方面更具有先天的优势,因此,我这一段时间在研究神经网络的时候同时研究了一下关于BP网络实现图像压缩的原理和过程,并且是在MATLAB上进行了仿真的实验,结果发现设计的BP神经网络具有不错的泛化能力,对于用于图像压缩方面的效果还不错.
经典的BP神经网络通常由三层组成: 输入层, 隐含层与输出层.通常输入层神经元的个数与特征数相关,输出层的个数与类别数相同, 隐含层的层数与神经元数均可以自定义.
神经网络是机器学习中一种常见的数学模型,通过构建类似于大脑神经突触联接的结构,来进行信息处理。在应用神经网络的过程中,处理信息的单元一般分为三类:输入单元、输出单元和隐含单元。 顾名思义:输入单元接受外部给的信号与数据;输出单元实现系统处理结果的输出;隐含单元处在输入和输出单元之间,从网络系统外部是无法观测到隐含单元的结构的。除了上述三个处理信息的单元之外,神经元间的连接强度大小由权值等参数来决定。
一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇) 反向传播算法(BackpropagationAlgorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程。 全文分为上下两篇,上篇主要介绍BP算法的原理(即公式的推导),介绍完原理之后,我们会将一些具体的数据带入一个简单的三层神经网络中,去完整的体验一遍BP算法的计算过程;下篇是一个项目实战,我们将带着读者一起亲手实现一个BP神经
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 昨天,分析了手写字数据集分类的原理,利用神经网络模型,编写了SGD算法的代码,分多个epochs,每个 epoch 又对 mini_batch 样本做多次迭代计算,详细的过程,请参考: 深度学习|神经网络模型实现手写字分类求解思路 这其中,非常重要的一个步骤,便是利用反向传播(BP)算法求权重参数的梯度,偏置量的梯度。下面根据以下
机器学习(十二)——神经网络代价函数、反向传播、梯度检验、随机初始化 (原创内容,转载请注明来源,谢谢) 一、代价函数 同其他算法一样,为了获得最优化的神经网络,也要定义代价函数。 神经网络的输出
机器学习(十二) ——神经网络代价函数、反向传播、梯度检验、随机初始化 (原创内容,转载请注明来源,谢谢) 一、代价函数 同其他算法一样,为了获得最优化的神经网络,也要定义代价函数。 神经网络的输出的结果有两类,一类是只有和1,称为二分分类(Binary classification),另一种有多个结果,称为多分类。其中,多个结果时,表示方式和平时不太一样。例如,y的结果范围在0~5,则表示y=2,用的是矩阵y=[0 1 0 0 0]T来表示,如下图: 代价函数可以类比logistic回归的代价函数,l
反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称。由于多层前馈神经网络的训练经常采用误差反向传播算法,人们也常把多层前馈神经网络称为BP网络。
神经网络模型求解思路总结:通过反向传播算法(BP算法)求解神经网络模型的损失误差,并进一步求解各个节点的权重参数和偏置参数。通过批梯度下降(SGD)算法进行参数更新。
上一篇 9 “驱魔”之反向传播大法引出了反向传播算法——神经网络的引擎,并在最后窥探了它的全貌。本篇将详细的讨论反向传播各方面的细节。尽管它被TensorFlow封装的很好,但仍强烈建议把它作为人工神经网络的基本功,理解并掌握它,回报巨大。 《Neural Network and Deep Learning》的作者Nielsen写道: It actually gives us detailed insights into how changing the weights and biases chang
上一篇 9 “驱魔”之反传大法 引出了反向传播算法,强调了其在神经网络中的决定性地位,并在最后窥探了算法的全貌。本篇将详细的讨论算法各方面的细节。尽管我们都能猜到它会被TF封装,但是仍强烈建议把它作为人工神经网络的基本功,理解并掌握它,回报巨大。 《Neural Network and Deep Learning》的作者Nielsen写道: It actually gives us detailed insights into how changing the weights and biases cha
如上图所示,我先对将地面划分为n个小区域,用发声装置分别在每一个小区域的中心点坐标处发声一次,每发声一次,就用四个麦克风记录下时间差,,只需要三个时间差即可,分别为
关于BP神经网络的原理可以参考我的上一篇文章:BP(Back Propagation)神经网络——原理篇
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 神经网络模型求解思路总结
反向传播算法(Backpropagation Algorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程。
作者 | EdvardHua 最近这段时间系统性的学习了BP算法后写下了这篇学习笔记。 目录 什么是梯度下降和链式求导法则 神经网络的结构 BP算法中的执行流程(前向传递和逆向更新) 输出层和隐藏层权重以及偏置更新的推导 Python 实现源码解析 手写数字识别实例 训练神经网络中有哪些难点(TODO) 梯度下降和链式求导法则 假设我们有一个函数J(w),如下图所示。 梯度下降示意图 现在,我们要求当 w 等于什么的时候,J(w) 能够取到最小值。从图中我们知道最小值在初始位置的左边,也就意味着如果
最近这段时间系统性的学习了BP算法后写下了这篇学习笔记,因为能力有限,若有明显错误,还请指出。 目录 1、什么是梯度下降和链式求导法则 2、神经网络的结构 3、BP算法中的执行流程(前向传递和逆向更新) 4、输出层和隐藏层权重以及偏置更新的推导 5、Python 实现源码解析 6、手写数字识别实例 7、训练神经网络中有哪些难点(TODO) 梯度下降和链式求导法则 假设
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 神经网络模型求解思路总结 神经网络模型,mini_batch批梯度下降(SGD)求解权重参数的原理见:深度学习神经网络模型简介和梯度下降求解,这篇文章中用一个小球下坡,解释了各个节点的权重参数和偏置量的迭代公式: 在以上迭代公式中,需要求解两个导数:一是成本函数对权重的偏导,二是成本函数对偏置量的偏导,这是利用神经网络模型分类求解的
前言:为什么有BP神经网络、CNN,还需要RNN? BP神经网络和CNN的输入输出都是互相独立的,也就是说它模拟了神经元之间的信息传递过程,但是作为人,我们依旧会记得小时候的很多事情,这就需要RNN了
最近一段时间在研究如何利用预测其销量个数,在网上搜索了一下,发现了很多模型来预测,比如利用回归模型、时间序列模型,GM(1,1)模型,可是自己在结合实际的工作内容,发现这几种模型预测的精度不是很高,于是再在网上进行搜索,发现神经网络模型可以来预测,并且有很多是结合时间序列或者SVM(支持向量机)等组合模型来进行预测,本文结合实际数据,选取了常用的BP神经网络算法,其算法原理,因网上一大堆,所以在此不必一一展示,并参考了bp神经网络进行交通预测的Matlab源代码这篇博文,运用matlab 2016a,给出了下面的代码,并最终进行了预测
BP算法(即反向传播算法)适合于多层神经元网络的一种学习算法,它建立在梯度下降法的基础上。BP网络的输入输出关系实质上是一种映射关系:一个n输入m输出的BP神经网络所完成的功能是从n维欧氏空间向m维欧氏空间中一有限域的连续映射,这一映射具有高度非线性。它的信息处理能力来源于简单非线性函数的多次复合,因此具有很强的函数复现能力。这是BP算法得以应用的基础。
如何直观地解释 back propagation 算法? - 胡逸夫的回答 - 知乎
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 昨天,分析了手写字数据集分类的原理,利用神经网络模型,编写了SGD算法的代码,分多个epochs,每个 epoch 又对 mini_batch 样本做多次迭代计算,详细的过程,请参考: 这其中,非常重要的一个步骤,便是利用反向传播(BP)算法求权重参数的梯度,偏置量的梯度。下面根据以下几个问题展开BP算法: 什么是BP算法? 为什
5 Neural Networks (part two) content: 5 Neural Networks (part two) 5.1 cost function 5.2 Back Propagation 5.3 神经网络总结 接上一篇4. Neural Networks (part one). 本文将先定义神经网络的代价函数,然后介绍逆向传播(Back Propagation: BP)算法,它能有效求解代价函数对连接权重的偏导,最后对训练神经网络的过程进行总结。 5.1
首先,神经网络应用在分类问题中效果很好。 工业界中分类问题居多。 LR或者linear SVM更适用线性分割。如果数据非线性可分(现实生活中多是非线性的),LR通常需要靠特征工程做特征映射,增加高斯项或者组合项;SVM需要选择核。 而增加高斯项、组合项会产生很多没有用的维度,增加计算量。GBDT可以使用弱的线性分类器组合成强分类器,但维度很高时效果可能并不好。
创世纪 2:7: “耶和华神用地上的尘土造人,将生气吹在他鼻孔里,他就成了有灵的活人。” 上一篇8 万能函数的形态:人工神经网络解封了人工神经网络,如果用非常简短的语言来概括它,我更喜欢维基百科的诠释: 人工神经网络是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。 就这样,人类照着上帝创造生灵万物的手法,居然也徒
BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下:
content: 5 Neural Networks (part two) 5.1 cost function 5.2 Back Propagation 5.3 NN conclusion 接上一篇 机器学习(3) -- 神经网络【Neural Networks (part one)】. 本文将先定义神经网络的代价函数,然后介绍后(逆)向传播(Back Propagation: BP)算法,它能有效求解代价函数对连接权重的偏导,最后对训练神经网络的过程进行总结。 5.1 cost
前言:从感知器开始引出神经元,感知器中的激活函数进行改进,引入全连接神经网络,只要并且重点介绍一下BP神经网络 感知器神经网络 也就01分类器,给定阈值,解决二分类问题。类似于前面提到的二值化,例如:
目前深度学习、AI研究很火爆,它们依赖的最底层就是简单的神经网络,本文将介绍神经网络基础,了解基本的神经网络原理,同时给出样例参考,该样例可以推广到其他的分类、回归问题分析
接上一篇(多层感知机(MLP)与神经网络结构 | 深度学习笔记)的最后,我们要训练多层网络的时候,最后关键的部分就是求梯度啦。纯数学方法几乎是不可能的,那么反向传播算法就是用来求梯度的,用了一个很巧妙的方法。 反向传播算法应该是神经网络最基本最需要弄懂的方法了,要是反向传播方法不懂,后面基本上进行不下去。 非常推荐的是How the backpropagation algorithm works (http://neuralnetworksanddeeplearning.com/chap2.html)
cnn每一层会输出多个feature map, 每个Feature Map通过一种卷积滤波器提取输入的一种特征,每个feature map由多个神经元组成,假如某个feature map的shape是m*n, 则该feature map有m*n个神经元。对于卷积层会有kernel, 记录上一层的feature map与当前层的卷积核的权重,因此kernel的shape为(上一层feature map的个数,当前层的卷积核数)。本文默认子采样过程是没有重叠的,卷积过程是每次移动一个像素,即是有重叠的。默认子采样层没有权重和偏置。关于CNN的其它描述不在这里论述,可以参考一下参考文献。只关注如何训练CNN。
上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能。由这些人工神经元构建出来的网络,才能够具有学习、联想、记忆和模式识别的能力。BP网络就是一种简单的人工神经网络。 本文具体来介绍一下一种非常常见的神经网络模型——反向传播(Back Propagation)神经网络。
神经网络和深度学习(一)——深度学习概述 (原创内容,转载请注明来源,谢谢) 一、监督学习与神经网络 监督学习可以在一些地方应用,包括房价预测、广告精准定位、图像识别、声音识别、翻译、图像定位等。
领取专属 10元无门槛券
手把手带您无忧上云