晓查 发自 凹非寺 量子位 报道 | 公众号 QbitAI 编程语言Objective-C的发明者Brad Cox前不久在弗吉尼亚州的家中去世,享年76岁。 Brad Cox是著名的计算机科学家,他发明的面向对象编程(OOP)语言Objective-C后来成为了苹果OS X和iOS设备App的主要开发语言。 此外,他还在软件工程、软件组件等方面做出过重要贡献。 Brad Cox本人也衷心于教育,1991年他出版了《面向对象程序设计:一种进化方法》一书,还致力于通过互联网开发早期的在线课程。 最后,考克斯
区别一、python虚拟机没有java强,java虚拟机是java的核心,python的核心是可以很方便地使用c语言函数或c++库。二、python是全动态性的,可以在运行时自己修改自己的代码,java只能通过变通方法实现。python的变量是动态的,而java的变量是静态的,需要事先声明,所以java ide的代码提示功能优于python ide。三,python的产生几十年了,几十年前面向过程是主流,所以用python有好多程序用的是面向过程设计方法,很多概念从c语言过来的,class在python中是后加入的,而java是为了实现没有指针的c++(当年com组件用的引用记数,java用的虚拟机),主要采用面向对象的设计方法,很多概念是oop的概念。面向过程,相对简洁直观,但容易设计出面条程序,面向对象,相对抽象优雅,但容易过度抽象。四,在实际使用的python入门简单,但要学会用python干活,需要再学习python各种库,pyhton的强大在于库,为什么python的库强大,原因是python的库可以用python,c语言,c++等设计,再提供给python使用,所以无论gpu运行,神经网络,智能算法,数据分析,图像处理,科学计算,各式各样的库在等着你用。而java没有python那么多的开源库,很多库是商业公司内部使用,或发布出来只是一个jar包,看不到原始代码。python虚拟机因为编译性没有java的支持的好(或者说故意这么设计的),一般直接使用源码(linux)&
首先,让我们看一下官网:https://pjreddie.com/darknet/
该站点专注于记录世界各地Rust各大活动的时间线,开源项目,大家可以提交活动信息。
近年来,以机器学习、深度学习为核心的AI技术得到迅猛发展,深度神经网络在各行各业得到广泛应用:
本文介绍了神经网络和深度学习的基础知识,以及如何在实际项目中应用。作者通过个人经历,介绍了神经网络和深度学习的发展,以及其在图像识别、语言识别、自然语言处理、基于结构化数据的决策等方面的应用。文章还介绍了Andrew Ng开设的“深度学习工程师”的微专业,以帮助读者进一步了解和掌握神经网络和深度学习的进展。
Pytorch是Facebook的AI研究团队发布了一个Python工具包,专门针对GPU加速的深度神经网络(DNN)编程.Torch是一个经典的对多维矩阵数据进行操作的张量(tensor)库,在机器学习和其他数学密集型应用有广泛应用。但由于Torch语言采用Lua,导致在国内一直很小众,并逐渐被支持Python的Tensorflow抢走用户。作为经典机器学习库Torch的端口,PyTorch为Python语言使用者提供了舒适的写代码选择。
作为一名 华山派新弟子 深度学习新手,该先学会用框架快速搭出神经网络,用到实际问题中去,还是该先练习用Python基本徒手搭建模型,在小数据集上训练,了解它们的工作原理?
B站是个宝,谁用谁知道😎 整理的一些适合算法工程师的学习资源,建议收藏! 0、数学基础 Up主:3Blue1Brown的数学基础:https://space.bilibili.com/88461692。用动画讲述数学专业知识,其视频涵盖了线性代数、微积分、拓扑学等领域,每门课都配有直观生动的动画演示,帮助观众加深对数学概念定理的理解。 数学分析:https://www.bilibili.com/video/av8042121复旦陈纪修老师的数学分析视频课程,共214讲。 数学建模:www.bilibili.
本文所述的题目源码已经开放到https://github.com/NJUPT-coding-gay/NCTF2018
与 Java、Python 等语言相比,C/C++ 语言是离操作系统更近的一种高级语言,因此其执行效率也更高。可以说,就像武侠小说中的“九阳神功”一样,C/C++ 一旦学成,其妙无穷!有了这个基础,你就可以一通百通,快速学习任何语言和编程技术了。
关于神经网络的基本介绍和实现,可以参见这篇文章 BP神经网络及其C语言实现:https://zhuanlan.zhihu.com/p/27110594
许多初学者觉得深度学习框架抽象,虽然调用了几个函数/方法,计算了几个数学难题,但始终不能理解这些框架的全貌。 为了更好地认识深度学习框架,也为了给一些想要自己亲手搭建深度学习框架的朋友提供一些基础性的指导,日前来自苏黎世联邦理工学院计算机科学系的硕士研究生Gokula Krishnan Santhanam在博客上撰文,概括了大部分深度学习框架都会包含的五大核心组件,为我们详细剖析了深度学习框架一般性的内部组织结构。以下由AI科技评论编译。 Gokula Krishnan Santhanam认为,大部分深度学
最近,有小伙伴问我“如何学习Python?”,我给出的建议是首先要做好一个心理准备,Python学习过程真的很痛苦,其次要选择好python2还是python3,。然后学习的时候要多看书多学习。今天,小编整理了一下详细的如何学习Python。希望对大家能够有所帮助!
今天再和大家分享一下入行机器视觉要学哪些东西。本文基本就是按照学习的先后顺序来讲的,所以可以看作是一个学习路线,文中很多书都是我以前看的,但现在可能有些过时了,大家自行判断参考。
我们都知道,神经网络下围棋能赢柯洁、读X光照片好过医生、就连文本翻译上也快超过人类了……其实在写代码方面,神经网络也丝毫不落下风……用Linux源代码训练2小时,一个递归神经网络就能重写好它自己的代码,这是不是比程序员学得还快? 接下来的文章,AI开发者Thibault Neveu就要手把手教你做一个这样的神经网络。 作者 | Thibault Neveu 编译 | AI100 我认这很疯狂。开发者让神经网络学会了自己编程来重写它自己代码!好吧,咱们也试。 预备条件 Tensorflow + 基本的深度
该工具用 OCaml 开发,主要用来对Java、Objective-C和C语言进行代码静态分析。 36Kr也做这个项目写了篇报道,这里摘录几句: Infer的联合开发者Peter O’Hearn称,Infer可以将大型代码分而治之,切割成小段代码,然后再将分析结果整合起来。这属于符号化人工智能(有别于更接近人思维模式的神经网络AI)的一种,据称其代码修复率可达80%。 Infer源自O’Hearn和他的学生Cristiano Calcagno及助教Dino Distefano的研究成果。三人创办了一家初创企
随着近年来科技的发展,人工智能的利用率也是越来越高,我们需要随时了解人工智能的哪些工具、库、平台,以及提供的功能,哪些更加适合你。下面介绍的一些AI工具、库和平台,了解它们最常见的用途、优缺点,以及一
【新智元导读】GitHub上根据星级(stra)列出了最常用的53个深度学习项目。其中,最受欢迎的是TensorFlow。表格的整理人ID分别是aymericdamien、lenck、pjreddie、vmarkovtsev和JohnAllen。这样一份实用工具表,赶紧收藏吧~ 项目名称星数简介TensorFlow29622使用数据流图计算可扩展机器学习问题。Caffe11799一个高效的开源深度学习框架。Neural Style10148由Torch实现的神经网络算法。Deep Dream9042一款图像
这两天,现任Google AI掌门,传奇一般的Jeff Dean,再次收获膜拜和引发热议。全因他的本科毕业论文首次曝光。
可以看到各大主流框架基本都支持Python,目前Python在科学计算和数据挖掘领域可以说是独领风骚。虽然有来自R、Julia等语言的竞争压力,但是Python的各种库实在是太完善了,Web开发、数据可视化、数据预处理、数据库连接,爬虫等无所不能,有一个完美的生态环境。仅在数据挖掘工具链上,Python就有Numpy、SciPy、Pandas、Scikit-learn、XGBoost等组件,做数据采集和预处理都非常方便,并且之后的模型训练阶段可以和TensorFlow等基于Python的深度学习框架完美衔接。
Georgi Gerganov,今年三月曾开源了llama.cpp项目,GitHub上已破三万星标,要知道Stable Diffusion也不过8.8k。
导读:近几年随着深度学习算法的发展,出现了许多深度学习框架。这些框架各有所长,各具特色。常用的开源框架有TensorFlow、Keras、Caffe、PyTorch、Theano、CNTK、MXNet、PaddlePaddle、Deeplearning4j、ONNX等。
人工神经网络(ANN),俗称神经网络,是一种基于生物神经网络结构和功能的计算模型。 它就像一个人工神经系统,用于接收,处理和传输计算机科学方面的信息。
哪些是值得学习的、好的专业库,而哪些又是应该避免的边缘项目,我们应该如何区分。
就像大多数软件应用程序的开发一样,开发人员也在使用多种语言来编写人工智能项目,但是现在还没有任何一种完美的编程语言是可以完全速配人工智能项目的。
大数据文摘授权转载自数据派THU 作者:陈之炎 对于据科学的初学者来说,利用开源的深度学习框架,可以大幅度简化复杂的大规模度学习模型的实现过程。在深度学习框架下构建模型,无需花费几天或几周的时间从头开始编写代码,便可以轻松实现诸如卷积神经网络这样复杂的模型。在本文中,将介绍几种非常有用的深度学习框架、它们的优点以及应用,通过对每个框架进行比较,研发人员了解如何有选择地使用它们,高效快捷完成项目任务。 深度学习框架概述 深度学习框架是一种界面、库或工具,它使编程人员在无需深入了解底层算法的细节的情况下,能够更
Torch7的本系列教程的主要目的是介绍Torch的入门使用。今天首先分享一下Torch7的安装。(在Ubuntu14.04安装torch7) 为什么选择Torch Torch的目标是在建立科学算法的同时,要有最大的灵活性和速度,而这一过程非常简单。Torch拥有一个大社区驱动包的生态系统,涉及机器学习、计算机视觉、信号处理、并行处理、图像、视频、音频和网络等,并建立在Lua社区基础之上。 Torch的核心是流行的神经网络和优化库,它们易于使用,同时在实现复杂的神经网络拓扑结构时具有最大的灵活性。你可以建立
最近要打个比赛,在处理数据的时候,发现数据竟然是json文件的,于是上网查了下,展示给大家O.O
选自arXiv 作者:Baptiste Wicht 等 机器之心编译 参与:乾树、李泽南 DLL 是一个旨在提供由 C++实现的受限玻尔兹曼机(RBM)和深度信念网络(DBN)及其卷积版本的软件库,由瑞士 University of Applied Science of Western Switzerland、弗里堡大学的研究者共同提出。与常用的深度学习框架类似,它还支持更多标准的神经网络。目前,该工具已开发至 1.1 版本。 项目链接:https://github.com/wichtounet/dll 引
Python简单易如门,但是具体怎么入门?第一步就是要找一本书籍先学一些基础知识,今天小编为大家推荐几本浅显易懂的基础入门书籍,希望对你有所帮助。
编者按:百度首席科学官吴恩达在ISC大会上谈到了超级计算能力如何在人工智能领域里应用,他的同事,百度硅谷人工智能实验室高级研究员Greg Diamos在参加纽约第33届机器学习国际大会上发表了关于基于GPU的深度学习论文。 Greg Diamos是百度硅谷人工智能实验室高级研究员,也是机器学习领域里的前沿人物。在加入百度公司之前,他在NVIDIA公司担任研究科学家和架构师(主要负责GPU流媒体多处理器和CUDA软件)。 基于这些从业背景,Diamos很自然地进入到基于GPU的深度学习领域。在介绍论文之前
昨天,这位Facebook人工智能实验室主任、纽约大学教授深刻探讨了深度学习的未来。
TensorFlow 是一款非常流行的开源库,它是由Google与Brain Team合作开发而成,主要用于机器学习类应用的开发。
在1989年的圣诞节,吉多决定开发一种新的脚本解释语言,作为ABC语言的继承。ABC语言是由吉多参加设计的一种教学语言,但是随着时间的推移,ABC语言因为自身封闭的语言特性,而没有广泛流行起来。
导读:近几年,随着深度学习的爆炸式发展,相关理论和基础架构得到了很大突破,它们奠定了深度学习繁荣发展的基础。这其中涌现了几个著名的深度学习平台,本文将对这些平台进行简要介绍。
导读:随着人工智能技术的发展与普及,Python超越了许多其他编程语言,成为了机器学习领域中最热门最常用的编程语言之一。有许多原因致使Python在众多开发者中如此受追捧,其中之一便是其拥有大量的与机器学习相关的开源框架以及工具库。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 递归神经网络 在传统神经网络中,模型不会关注上一时刻的处理会有什么信息可以用于下一时刻,每一次都只会关注当前时刻的处理。举个例子来说,我们想对一部影片中每一刻出现的事件进行分类,如果我们知道电影前面的事件信息,那么对当前时刻事件的分类就会非常容易。实际上,传统神经网络没有记忆功能,所以它对每一刻出现的事件进行分类时不会用到影片已经出现的信息,那么有什么方法可以让神经网络能够记住这些信息呢?答案就是Recurrent
本列表选编了一些机器学习领域牛B的框架、库以及软件(按编程语言排序)。 C++ 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统。 通用机器学习 MLPack DLib ecogg shark Closure 通用机器学习 Closure Toolbox—Clojure语言库与工具的分类目录 Go 自然语言处理
GitHub上现在托管有超过300种编程语言。从最广泛使用的语言比如Python,Java、Javascript等,到一些非常非常小众的语言例如Befunge,应有尽有。
TIOBE 2021 年 01 月份的编程语言排行榜已经公布,官方的标题是:Python 成为 TIOBE 2020 年的年度编程语言。这是 Python 第四次成为 TIOBE 年度编程语言。
本文介绍了几种非常有用的深度学习框架、它们的优点以及应用,通过对每个框架进行比较,研发人员了解如何有选择地使用它们,高效快捷完成项目任务。
本文汇编了一些机器学习领域的框架、库以及软件(按编程语言排序)。 C++ 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB 接口,并支持 Windows, Linux, Android and Mac OS 操作系统。 通用机器学习 MLPack DLib ecogg shark Closure 通用机器学习 Closure Toolbox—Clojure 语言库与工具的分类目录 Go 自然语言处
为了更好地服务于目标客户, 嵌入式设计团队也在研究新技术, 如机器学习和深度学习。 深度学习允许这些设计师以有限的资源更快地开发和部署复杂的系统和设备。 通过这些技术, 设计团队可以使用数据驱动的方法建立系统或复杂的系统模型。
本文整理了 GitHub 上最流行的 57 款深度学习项目(按 stars 排名)。最后更新:2016.08.09 1.TensorFlow 使用数据流图计算可扩展机器学习问题 TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow 的表现比第一代的 DistBelief 快了2倍。 TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用 TensorFlow。任何基于梯度的机器学习算法都能够受益于 TensorFlow 的
1.TensorFlow 使用数据流图计算可扩展机器学习问题 TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow 的表现比第一代的 DistBelief 快了2倍。 TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用 TensorFlow。任何基于梯度的机器学习算法都能够受益于 TensorFlow 的自动分 化(auto-differentiation)。通过灵活的 Python 接口,要在 TensorFlow
导读:文艺复兴以来,源远流长的科学精神和逐步形成的学术规范,使西方国家在自然科学的各个领域取得了垄断性的优势;也正是这样的优势,使美国在信息技术发展的六十多年间名家辈出、独领风骚。
领取专属 10元无门槛券
手把手带您无忧上云