首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

第十四届蓝桥杯集训——练习解题阶段(无序阶段)- 基础练习 序列求和

最近的一些文章都可能会很碎,写到哪里是哪里,过一阵子会具体的整理一遍,这里其它的类型题先往后排一排,因为蓝桥最后考的也就是对题目逻辑的理解能力,也就是dp分析能力了,所以就主要目标定在这里,最近的题目会很散,很多,基本上都是网罗全网的一些dp练习题进行二次训练,准备比赛的学生底子薄的先不建议看啊,当然,脑子快的例外,可以直接跳过之前的一切直接来看即可,只需要你在高中的时候数学成绩还可以那就没啥问题,其实,dp就是规律总结,我们只需要推导出对应题目的数学规律就可以直接操作,可能是一维数组,也可能是二维数组,总体来看二维数组的较多,但是如果能降为的话建议降为,因为如果降为起来你看看时间复杂度就知道咋回事了,那么在这里祝大家能无序的各种看明白,争取能帮助到大家。

02
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于神经标签搜索,中科院&微软亚研零样本多语言抽取式摘要入选ACL 2022

    来源:机器之心本文约2500字,建议阅读5分钟本文介绍了基于神经标签搜索情况下,中科院和微软亚研的实验进展。 这项研究旨在解决零样本下法语、德语、西班牙语、俄语和土耳其语等多语种的抽取式摘要任务,并在多语言摘要数据集 MLSUM 上大幅提升了基线模型的分数。 抽取式文本摘要目前在英文上已经取得了很好的性能,这主要得益于大规模预训练语言模型和丰富的标注语料。但是对于其他小语种语言,目前很难得到大规模的标注数据。 中国科学院信息工程研究所和微软亚洲研究院联合提出一种是基于 Zero-Shot 的多语言抽取式文本

    02

    基于神经标签搜索,中科院&微软亚研零样本多语言抽取式摘要入选ACL 2022

    机器之心专栏 机器之心编辑部 这项研究旨在解决零样本下法语、德语、西班牙语、俄语和土耳其语等多语种的抽取式摘要任务,并在多语言摘要数据集 MLSUM 上大幅提升了基线模型的分数。 抽取式文本摘要目前在英文上已经取得了很好的性能,这主要得益于大规模预训练语言模型和丰富的标注语料。但是对于其他小语种语言,目前很难得到大规模的标注数据。 中国科学院信息工程研究所和微软亚洲研究院联合提出一种是基于 Zero-Shot 的多语言抽取式文本摘要模型。具体方法是使用在英文上预训练好的抽取式文本摘要模型来在其他低资源语言上

    02
    领券