假设图用邻接矩阵存储。输入图的顶点信息和边信息,完成邻接矩阵的设置,并计算各顶点的入度、出度和度,并输出图中的孤立点(度为0的顶点)
这篇文章主要来讲一下邻接矩阵 邻接表 链式前向星(本篇需要具备一定图的基础知识,至少邻接矩阵之前要会,这里主要讲解邻接表和链式前向星)
树(Tree)是一种非线性的数据结构,由若干个节点(Node)组成。树的定义包括以下几个术语:
图的周游:是一种按某种方式系统地访问图中的所有节点的过程,它使每个节点都被访问且只访问一次。图的周游也称图的遍历。
图 的 遍历 就是 对 图 中的 结点 进行遍历 , 遍历 结点 有如下两种策略 :
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
按照右手原则,每次选择上一顶点的最右边的下一顶点,走过一个顶点标记一个顶点,不能走被标记过的顶点,一条路走到黑,直到无路可走,然后回溯。 这个就是先走到最大深度,不能再深入后,再返回到有支路可走的顶点继续深入到最下面。
C语言数据结构图的基本操作及遍历(存储结构为邻接矩阵)请查看:https://www.omegaxyz.com/2017/05/17/graphofds2/
含有n个顶点的无向完全图有多少条边? n×(n-1)/2条边 含有n个顶点的有向完全图有多少条弧? n×(n-1)条边
PS:这篇文章是之前 为什么我没写过「图」相关的算法?的修订版,主要是因为旧文中缺少 visited 数组和 onPath 数组的讨论,这里补上,同时将一些表述改得更准确,文末附带图论进阶算法。
V0与V1、V2、V3都有边,因此第0行的1、2、3位置处置1。 Vi与Vj有边,则第i行的第j位置处置1。
我觉得去理解数据结构的时候,需要注意到它其实包含两个层面。一个层面是高一级的,从功能、接口的角度去理解,比如说堆,有什么功用,都有怎样的 API;另一个层面是低一级的,从结构和实现的角度去理解,比如堆的实现,可以用数组实现,也可以用单独的节点对象+指针实现。上面一层相同,但是下面一层不同,功能上可能基本一致,但是性能上针对不同的应用场景就可以天差地别。
无论是有向图还是无向图,主要的存储方式都有两种:邻接矩阵和邻接表。前者图的数据顺序存储结构,后者属于图的链接存储结构。
图的遍历和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历(Traverse Graph)。 图的遍历方法一般有两种,第一种是深度优先遍历(Depth First Search),也有称为深度优先搜索,简称为DFS。第二种是《广度优先遍历(Breadth First Search)》,也有称为广度优先搜索,简称为BFS。我们在《堆栈与深度优先搜索》中已经较为详细地讲述了深度优先搜索的策略,这里不再赘述。我们也可以把图当作一个迷宫,设定一个起始点
1、图的遍历 和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。它是许多图的算法的基础。 深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。它们对无向图和有向图均适用。 注意: 以下假定遍历过程中访问顶点的操作是简单地输出顶点。 2、布尔向量visited[0..n-1]的设置 图中任一顶点都可能和其它顶点相邻接。在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。为了避免重复访问同一个顶点,必须记住每个已访问的顶点。为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。 深度优先遍历(Depth-First Traversal) 1.图的深度优先遍历的递归定义 假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。 图的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。 2、深度优先搜索的过程 设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。此时,若x不是源点,则回溯到在x之前被访问过的顶点;否则图中所有和源点有路径相通的顶点(即从源点可达的所有顶点)都已被访问过,若图G是连通图,则遍历过程结束,否则继续选择一个尚未被访问的顶点作为新源点,进行新的搜索过程。 3、深度优先遍历的递归算法 (1)深度优先遍历算法 typedef enum{FALSE,TRUE}Boolean;//FALSE为0,TRUE为1 Boolean visited[MaxVertexNum]; //访问标志向量是全局量 void DFSTraverse(ALGraph *G) { //深度优先遍历以邻接表表示的图G,而以邻接矩阵表示G时,算法完全与此相同 int i; for(i=0;i<G->n;i++) visited[i]=FALSE; //标志向量初始化 for(i=0;i<G->n;i++) if(!visited[i]) //vi未访问过 DFS(G,i); //以vi为源点开始DFS搜索 }//DFSTraverse (2)邻接表表示的深度优先搜索算法 void DFS(ALGraph *G,int i){ //以vi为出发点对邻接表表示的图G进行深度优先搜索 EdgeNode *p; printf("visit vertex:%c",G->adjlist[i].vertex);//访问顶点vi visited[i]=TRUE; //标记vi已访问 p=G->adjlist[i].firstedge; //取vi边表的头指针 while(p){//依次搜索vi的邻接点vj,这里j=p->adjvex if (!visited[p->adjvex])//若vi尚未被访问 DFS(G,p->adjvex);//则以Vj为出发点向纵深搜索 p=p->next; //找vi的下一邻接点 } }//DFS (3)邻接矩阵表示的深度优先搜索算法 void DFSM(MGraph *G,int i) { //以vi为出发点对邻接矩阵表示的图G进行DFS搜索,设邻接矩阵是0,l矩阵 int j; printf("visit vertex:%c",G->vexs[i]);//访问顶点vi visited[i]=TRUE; for(j=0;j<G->n;j++) //依次搜索vi的邻接点 if(G->edges[i][j]==1&&!vi
无论是数据中心内的整网网络拓扑,还是网络设备内的业务转发逻辑(如开源用户态网络协议栈 VPP:Vector Packet Processing)都构成一张有向图。想要从这张图中提取有用信息,就需要图论方面的相关知识。
图是一种非线性数据结构,它由节点(也称为顶点)和连接这些节点的边组成。图可以用来表示各种关系和连接,比如网络拓扑、社交网络、地图等等。图的节点可以包含任意类型的数据,而边则表示节点之间的关系。图有两种常见的表示方法:邻接矩阵和邻接表。
图,也是一种数据结构,其节点可以具有零个或者多个相邻元素,两个节点之间的连接称为边,节点也称为顶点,图表示的是多对多的关系。
图是不同于前面两种数据结构的另一种新的数据结构,线性表中元素与元素之间是被串起来的,每个数据元素只有一个直接前驱和一个直接后继,是一种一对一的数据结构;在树的结构中,数据元素之间有明显的层次关系,并且每一层上的数据元素可能和下一层中多个元素相关,但只能和上一层中的一个元素相关,是一种一对多的数据结构举个例子就是你可以有多个孩子,但是只能有一对父母。但现实中的情况是,人与人之间的关系是复杂的,不是简单的线性关系,也不全是层级关系,而可能交叉相互关系,也就是多对多的数据情况,这就图的一个概念,图是一种多对多的数据结构。
连通图:在无向图G中,若对任何两个顶点 v、u 都存在从v 到 u 的路径,则称G是连通图。
给定的两个邻接矩阵,判断其三个必要非充分条件: ①结点数目相同 ②变数相同 ③度数相同的结点数相同 以①②③为前提进行矩阵变换,看给定的两个矩阵中,其中的一个矩阵是否能变换为另一个矩阵;
图是一种非线性的数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为顶点。 如下图:
本文主要讲解 数据结构中的图 结构,包括 深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树算法等,希望你们会喜欢。
开门见山,本篇博客就介绍图相关的东西。图其实就是树结构的升级版。上篇博客我们聊了树的一种,在后边的博客中我们还会介绍其他类型的树,比如红黑树,B树等等,以及这些树结构的应用。本篇博客我们就讲图的存储结构以及图的搜索,这两者算是图结构的基础。下篇博客会在此基础上聊一下最小生成树的Prim算法以及克鲁斯卡尔算法,然后在聊聊图的最短路径、拓扑排序、关键路径等等。废话少说开始今天的内容。 一、概述 在博客开头,我们先聊一下什么是图。在此我不想在这儿论述图的定义,当然那些是枯燥无味的。图在我们生活中无处不在呢,各种地
前面几篇已经介绍了线性表和树两类数据结构,线性表中的元素是“一对一”的关系,树中的元素是“一对多”的关系,本章所述的图结构中的元素则是“多对多”的关系。图(Graph)是一种复杂的非线性结构,在图结构中,每个元素都可以有零个或多个前驱,也可以有零个或多个后继,也就是说,元素之间的关系是任意的。现实生活中的很多事物都可以抽象为图,例如世界各地接入Internet的计算机通过网线连接在一起,各个城市和城市之间的铁轨等等。
权重(Weight):边上可以附带的权重大小,用来表示从一个顶点到另一个顶点的成本。
拓扑排序算法:给出有向图邻接矩阵 1.逐列扫描矩阵,找出入度为0且编号最小的顶点v
PS:邻接表,存储方法跟树的孩子链表示法相类似,是一种顺序分配和链式分配相结合的存储结构。如这个表头结点所对应的顶点存在相邻顶点,则把相邻顶点依次存放于表头结点所指向的单向链表中。图的邻接表储存方式相对于邻接矩阵比较节约空间,对于邻接矩阵需要分别把顶点和边(顶点之间的关系)用一维数组和二维数组储存起来。而邻接表则是把顶点按照顺序储存到一维数组中,然后再通过链式方式,把有关系的顶点下标链接到后方,咱们先不考虑权重问题,结构体定义简单一点,当然加上权值也不难。下方看图解释。 邻接表 有向图 无向图 逆邻接表 有
设G=(V,E)是n个顶点的图,则G的邻接矩阵用n阶方阵G表示,若(Vi ,Vj )或< Vi ,Vj >属于E(G),则G[i][j]为1,否则为0。
又要画图了。一到这里就莫名其妙的烦,之前写过的图相关博客已经让我都删了,讲的语无伦次。 希望这篇能写好点。
Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法。该算法被称为是“贪心算法”的成功典范。
的「多源汇最短路」算法 Floyd 算法进行求解,同时使用「邻接矩阵」来进行存图。
图的基本概念中我们需要掌握的有这么几个概念:无向图、有向图、带权图;顶点(vertex);边(edge);度(degree)、出度、入度。下面我们就从无向图开始讲解这几个概念。
设图 A = (V, E) 有 n 个顶点,则图的邻接矩阵是一个二维数组 A.Edgen,定义为:
图(Graph),是由顶点的有限非空集合和顶点之间边的集合组成。图中有两个元素:顶点和边。
图的遍历和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历(Traverse Graph)。 图的遍历方法一般有两种,第一种是我们在前面讲过的《深度优先遍历(Depth First Search)》,也有称为深度优先搜索,简称为DFS。第二种是广度优先遍历(Breadth First Search),也有称为广度优先搜索,简称为BFS。我们在《队列与广度优先搜索》中已经较为详细地讲述了广度优先搜索的策略,这里不再赘述。如果说图的深度优先遍历类
数据结构是程序的核心之一,可惜本公众内关于数据结构的文章略显不足,于是何小编打算与向柯玮小编一起把数据结构这部分补齐,来满足各位观众大老爷。
该文讲述了如何使用邻接矩阵存储图的深度优先遍历。首先,介绍了邻接矩阵存储图的表示方式。然后,说明了如何利用DFS算法对邻接矩阵进行深度优先遍历。最后,通过一个具体的例子展示了如何使用DFS算法进行图的遍历。
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说【C#数据结构系列】图[通俗易懂],希望能够帮助大家进步!!!
在选修某些课程之前需要一些先修课程。例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]
在数据结构中,树和图可以说是不可或缺的两种数据结构。其中,对于图来说,最重要的算法可以说就是遍历算法。而搜索算法中,最标志性的就是深度优先算法和广度优先算法。
举个栗子,大家一定都用过微信,假设你的微信朋友圈中有若干好友:张三、李四、王五、赵六、七大姑、八大姨。
邻接矩阵表示法是一种图的表示方法,其中每个顶点都有一个唯一的索引,而每条边则由两个顶点之间的连接确定。深度优先遍历(DFS)和广度优先遍历(BFS)是两种常用的图遍历算法。
在上一篇文章中,我们学习完了图的相关的存储结构,也就是 邻接矩阵 和 邻接表 。它们分别就代表了最典型的 顺序存储 和 链式存储 两种类型。既然数据结构有了,那么我们接下来当然就是学习对这些数据结构的操作啦,也就是算法的部分。不管是图还是树,遍历都是很重要的部分,今天我们就先来学习最基础的两种图的遍历方式。
2、考虑到交通图的有向行(如航运,逆水和顺水时的船速就不一样)带权有向图中,称路径上的第一个顶点为源点,最后一个顶点为终点。
图(Graph)是由顶点和连接顶点的边构成的离散结构。在计算机科学中,图是最灵活的数据结构之一,很多问题都可以使用图模型进行建模求解。例如:生态环境中不同物种的相互竞争、人与人之间的社交与关系网络、化学上用图区分结构不同但分子式相同的同分异构体、分析计算机网络的拓扑结构确定两台计算机是否可以通信、找到两个城市之间的最短路径等等。
邻接表的问题:计算有向图的入度非常麻烦(入度:指向自己的数量,出度:指向别人的数量)
领取专属 10元无门槛券
手把手带您无忧上云