图像增强—自适应直方图均衡化(AHE)-限制对比度自适应直方图均衡(CLAHE)
CLAHE是一个比较有意思的图像增强的方法,主要用在医学图像上面。之前的比赛中,用到了这个,但是对其算法原理不甚了解。在这里做一个复盘。
首先我们获取了一个LPG气瓶图像,该图像取自在传送带上运行的仓库。我们的目标是找出LPG气瓶的批号,以便更新已检测的LPG气瓶数量。
在计算机视觉和图像处理领域,光照对图像质量和分析结果都有重要影响。由于光照条件的不同,同一场景下的图像可能有着明显的亮度差异,这对于图像的分析和处理是不利的。因此,光照归一化处理是一个常见的预处理步骤之一。 OpenCV是一个广泛应用于计算机视觉和图像处理的开源库,它提供了丰富的图像处理函数和工具。本篇文章将详细介绍OpenCV中的光照归一化处理方法,并给出相应的代码示例。
随着人口老龄化日益增加,老年人跌倒的比例逐年增高,本论文研究通过采集身体姿态数据来判断是否发生跌倒。选用背景差分法和形态学算法提取目标骨架,骨架提取经历九步:图像灰度化,背景差分法提取目标轮廓,使用CLAHE算法增强对比度,高斯滤波,Solel算子进行边缘检测,小波去噪,最大类间误差法二值化,形态学运算和中值滤波。然后用基于人体比例的方法初步判断跌倒情况,再用基于运动趋势的精准判断跌倒情况。算法总体效果可以,误检较少。
直方图(Histogram),又称质量分布图,是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据类型,纵轴表示分布情况。
根据文章内容总结摘要。
一、自适应直方图均衡化(Adaptive histgram equalization/AHE)
这篇文章将向你展示一个非常简单但功能强大的示例,说明如何使用你可以在设备上运行的算法来计算交通流量。 阅读本文之前,建议你阅读这篇关于道路交通分类的文章,它提到了我们在本项目中将要介绍的基础管道架构的一部分。 文章地址:http://www.atyun.com/7883_基于计算机视觉和opencv:创建一个能够计算道路交通.html 本项目需要的完整代码: https://github.com/creotiv/object_detection_projects/tree/master/opencv_t
在对图片进行处理的时候,之前就使用torch自带的transfrom来对图像做一些反转,平移,随机剪裁,拉伸这样的任务。然而最近的图像分类+语义分割的比赛中,发现了这样的一个库函数:Albumentations。
上一篇文章,我们主要是给大家看了下直方图均衡干了什么事情,并且直接给出了,针对离散型数据的直方图均衡化的公式。
在计算机视觉相关任务中,数据增强(Data Augmentation)是一种常用的技术,用于扩展训练数据集的多样性。它包括对原始图像进行一系列随机或有规律的变换,以生成新的训练样本。数据增强的主要目的是增加模型的泛化能力、提高模型的鲁棒性,并减轻过拟合的风险。以下是进行数据增强的几个重要原因:
在理想情况下,光学成像系统在物体与图像之间实现点对点映射,捕捉原始信息。然而,在大气中传输时,光学传输过程受到干扰,导致远距离成像质量下降。在传输过程中,包括大气吸收导致的低光对比度以及带来原始光场噪声的大气散射等必然过程被认为是不可逆的,并且由于复杂性而增加熵。在能见度极低的条件下,特别是当成像距离超过气象光学范围时,图像重建变得具有挑战性。然而,对于民用、军事和商业用途,通过大气散射介质延长成像距离以收集所需的光信息至关重要。
摘要: 我们可以创建一个能够对交通标志进行分类的模型,并且让模型自己学习识别这些交通标志中最关键的特征。在这篇文章中,我将演示如何创建一个深度学习架构,这个架构在交通标志测试集上的识别准确率达到了98%。 交通标志是道路基础设施的重要组成部分,它们为道路使用者提供了一些关键信息,并要求驾驶员及时调整驾驶行为,以确保遵守道路安全规定。如果没有交通标志,可能会发生更多的事故,因为司机无法获知最高安全速度是多少,不了解道路状况,比如急转弯、学校路口等等。现在,每年大约有130万人死在道路上。如果没有这些道路标志
简单来说,直方图就是图像中每个像素值的个数统计,比如说一副灰度图中像素值为0的有多少个,1的有多少个……:
交通标志是道路基础设施的重要组成部分,它们为司机提供关于路况的信息和合理的建议,同时也反过来促使司机调整驾驶行为,以确保他们遵守现行的任何道路法规。如果没有这些有用的标志,我们很可能会面临更多的事故,因为司机难以得知安全行驶速度、道路工程、急转弯或学校前面的交叉路口等关键的信息反馈。在我们的现代,每年约有130万人死于道路交通事故。如果没有我们的路标,这个数字会高得多。
文本图像在图像处理中也是占用了一个比较大的空间,市面上也有着不少这方面的专业软件,其中有一个比较重要的过程就是对文本图像背景的纯化,因为背景复杂了后,对于后续的识别,包括二值化都会带来不利的影响。 本文介绍三种不同的背景纯化方式。
考虑这样一个图像,它的像素值仅局限于某个特定的值范围。例如,较亮的图像将把所有像素限制在高值上。但是一幅好的图像会有来自图像所有区域的像素。因此,您需要将这个直方图拉伸到两端(如下图所示,来自wikipedia),这就是直方图均衡化的作用(简单来说)。这通常会提高图像的对比度。
在日常做CV的过程中,慢慢的就得去琢磨怎么使用一些直观的方式来展现数据,甚至来展现一些图片的区别。在Python中,我们经常会用到matplotlib这个2D绘图库来绘制图形。在matplotlib能够绘制的种类很多,在这篇文章中,我会通过绘制直方图来去展现一些常用的绘图技巧和方式。写很长的东西不一定专业,只能帮助你对一个概念有一个快速入门,知识体系能稍微系统一点而已。抛砖引玉,大家共同学习。
DICOM(Digital Imaging and Communications in Medicine)即医学数字成像和通信,是医学图像和相关信息的国际标准(ISO 12052)。它定义了质量能满足临床需要的可用于数据交换的医学图像格式,可用于处理、存储、打印和传输医学影像信息。DICOM可以便捷地交换于两个满足DICOM格式协议的工作站之间。目前该协议标准不仅广泛应用于大型医院,而且已成为小型诊所和牙科诊所医生办公室的标准影像阅读格式。 DICOM被广泛应用于放射医疗、心血管成像以及放射诊疗诊断设备(X
考虑一个图像,其像素值只局限于某些特定的数值范围。例如,较亮的图像将有所有的像素限制在高值。但是一个好的图像会有来自图像所有区域的像素。因此,你需要将这个直方图拉伸到两端(如下图所示,来自维基百科),这就是直方图均衡化的作用(简单地说)。这通常会改善图像的对比度。
opencv中图像的均值化都是基于灰度图的。 直方图的均值化能提高图片的对比度。 image.png 下面介绍两种方法 自带函数均值化 cv.equalizeHist() 参数: 输入一个8比特的单通道图像 自定义均值化 上述的直方图均衡化可以可能到是一种全局意义上的均衡化,但是有的时候这种操作并不是很好,会把某些不该调整的部分给调整了。Opencv中还有一种直方图均衡化,它是一种局部局部来的均衡化,也就是是说把整个图像分成许多小块(比如按10*10作为一个小块),那么对每个小块进行均衡化。这种
参考博客: https://blog.csdn.net/xue_wenyuan/article/details/51533953 https://blog.csdn.net/jinshengtao/article/details/17797641 傅里叶变换是一种信号处理中的有力工具,可以帮助我们将图像从空域转换到频域,并提取到空域上不易提取的特征。但是经过傅里叶变换后, 图像在不同位置的频度特征往往混合在一起,但是Gabor滤波器却可以抽取空间局部频度特征,是一种有效的纹理检测工具。 在图像处理中
在第一篇教程中,我们讲述了简单的图像增强技巧,本节通过使用Compose方法将各种图像增强的方法组合起来,形成一个图像增强的pipeline,方便产生大量不同种类的增强图片。
参考博客:https://blog.csdn.net/xue_wenyuan/article/details/51533953 https://blog.csdn.net/jinshengtao/article/details/17797641 傅里叶变换是一种信号处理中的有力工具,可以帮助我们将图像从空域转换到频域,并提取到空域上不易提取的特征。但是经过傅里叶变换后, 图像在不同位置的频度特征往往混合在一起,但是Gabor滤波器却可以抽取空间局部频度特征,是一种有效的纹理检测工具。 在图像处理中,G
作者:方阳, 转载请注明地址。 文件和代码可以在Github下载, markdown推荐用typora打开。 这篇文章是DIP的第二次作业,对图像增强技术进行综述,目录如下:
对于医学的任务而言,最重要的因素就是Big Data,而且是Big Good Data,数据的质量控制是非常重要的。唐晓颖团队的一个重要工作就是研究用自动化的方法对不精准的标注进行校正。
cv2.calcHist(image,channels,mask,histSize,ranges) -> list
自动色阶、自动对比度以及直方图均衡这三个算法虽然很普通,也很简单,但是在实际应用中有着非常高的使用率,特别是在修图中,很多设计师打开一幅图,首先的的操作就是Shift+Ctrl+L(自动色阶)。在原理实现上,他们都属于基于直方图统计方面的算法,执行效率都非常之高。我在调整图像- 自动对比度、自动色阶算法一文中对他们的过程进行了详细的分析和解读,这里不在详述。
在过去几年从事多个计算机视觉和深度学习项目之后,我在这个博客中收集了关于如何处理图像数据的想法。对数据进行预处理基本上要比直接将其输入深度学习模型更好。有时,甚至可能不需要深度学习模型,经过一些处理后一个简单的分类器可能就足够了。
对 ImageNet validation set 中的前 2000 张图片进行处理,采用 Intel Core i7-7800X CPU. 不同数据增强库的处理速度对比(以秒为单位,时间越少越好).
图像直方图是反映一个图像像素分布的统计表,其横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征。直方图的显示方式是左暗又亮,左边用于描述图像的暗度,右边用于描述图像的亮度。
在本书的第二部分中,您将更深入地了解 OpenCV 库。 更具体地说,您将看到计算机视觉项目中所需的大多数常见图像处理技术。 此外,您还将看到如何创建和理解直方图,直方图是用于更好地理解图像内容的强大工具。 此外,您将在计算机视觉应用中看到所需的主要阈值处理技术,这是图像分割的关键部分。 此外,您还将看到如何处理轮廓,轮廓用于形状分析以及对象检测和识别。 最后,您将学习如何构建第一个增强现实应用。
直方图均衡化,可以对在不同的光线条件下拍摄不同的图片进行均衡化处理,使得这些图片具有大致相同的光照条件。因此,我们可以用在训练模型之前,对图像进行对预处理。
如果您使用OpenCV已有一段时间,那么您应该已经注意到,在大多数情况下,OpenCV都使用CPU,这并不总能保证您所需的性能。为了解决这个问题,OpenCV在2010年增加了一个新模块,该模块使用CUDA提供GPU加速。您可以在下面找到一个展示GPU模块优势的基准测试:
之前写过很多图像直方图相关的知识跟OpenCV程序演示,这篇算是把之前的都回顾一波。做好自己的知识梳理。
该论文是18年发布的,提出了一种基于Deep U-Net的多任务学习框架,用于GE-MRI左心房分割,该框架同时执行心房分割和消融前后分类。虽然论文已经很老了,但是改论文提出的多任务和后处理方法到现在还是可以参考的。
你知道吗?果蝇是公认被人类研究的最彻底的生物之一,截至目前,已有 8 个诺贝尔奖颁发给使用果蝇的研究,这些研究推动了分子生物学、遗传学和神经科学的发展。
图像处理(以及机器视觉)在学校里是一个很大的研究方向,很多研究生、博士生都在导师的带领下从事着这方面的研究。另外,就工作而言,也确实有很多这方面的岗位和机会虚位以待。而且这种情势也越来越凸显。那么图像处理到底都研究哪些问题,今天我们就来谈一谈。图像处理的话题其实非常非常广,外延很深远,新的话题还在不断涌现。下面给出的12个大的方向,系我认为可以看成是基础性领域的部分,而且它们之间还互有交叉 1、图像的灰度调节 图像的灰度直方图、线性变换、非线性变换(包括对数变换、幂次变换、指数变换等)、灰度拉伸、灰度均衡、直方图规定化等等)。 例如,直方图规定化(代码请见http://blog.csdn.net/baimafujinji/article/details/41146381)
初学OpenCV图像处理的小伙伴肯定对什么高斯函数、滤波处理、阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特点,也可对各位调参、测试有一定帮助。
http://blog.csdn.net/baimafujinji/article/details/50614332
雷锋网 AI 研习社按:最近一段时间以来,医学影像作为人工智能重要的应用领域,受到学界和越来越多 AI 公司的关注。Nature、Science、Cell 上频频刊登在医疗影像中应用 AI 的文章,谷歌、IBM、依图科技等公司也纷纷加入 AI+ 医疗的竞争……
二值图像指的是只有黑色和白色两种颜色的图像。每个像素点可以用 0/1 表示,0 表示黑色,1 表示白色。 OpenCV提供了cv2.threshold,可以对图像进行二值化处理。
霍夫变换是一种特征提取技术,主要应用于检测图像中的直线或者圆。 OpenCV 中分为霍夫线变换和霍夫圆变换。
爱好是玩棋盘游戏,因为对CNN有所了解,所以决定开发一种可以在纸牌游戏中击败人类的应用程序。想使用我自己的数据集从头开始构建模型,以查看使用小数据集从头开始的模型的性能如何。选择从一个不太难的游戏入手!(又称Dobble)。
领取专属 10元无门槛券
手把手带您无忧上云