官网:www.cs.toronto.edu/~kriz/cifar 介绍:CIFAR-10数据集说明、TensorFlow CNN 测试CIFAR-10数据集
本文为您提供了COCO数据集的全面指南,涉及其下载、安装及使用方法。文章内容覆盖Python编程语言和机器学习框架,适用于所有级别的读者。关键词包括COCO数据集、图像识别、机器学习应用、Python数据处理、深度学习教程。
文本到图像的 AI 模型仅根据简单的文字输入就可以生成图像。用户可以输入他们喜欢的任何文字提示——比如,“一只可爱的柯基犬住在一个用寿司做的房子里”——然后,人工智能就像施了魔法一样,会产生相应的图像。
#2020开年第一篇,谁能预料新年伊始的世界如此脆弱,中国疫情肆虐,美伊箭拔弩张,英国愤懑脱欧,儿时的偶像科比和女儿也不幸离世,生命之渺小,生活之曲折,兄弟们,要充满阳光地活着啊,人间,值得。:-)今天还是鄙人生日,愿世间多点爱,与和平。
目前,计算机视觉神经网络被大量参数化:它们通常有数千万或数亿个参数,这是它们成功利用大型图像集合 (如 ImageNet) 的关键。然而,这些高容量模型往往会在小型(包含数十万张图像)甚至中型数据集上过度拟合。因此,有研究者指出在 2014 年:学习 CNN 的过程相当于估计模型数百万个参数,这需要大量的带标注的数据。
本文为机器翻译,推荐直接看原文:COCO Dataset: All You Need to Know to Get Started
如果你希望通过编译源码安装 OneFlow,可以参考 OneFlow源码仓库的 README,在编译 OneFlow 源码之前,强烈推荐先阅读 Troubleshooting。
图像语义分割和对象检测是计算机视觉中的两个重要任务。语义分割是将图像中的每个像素分类到特定的类别,而对象检测是识别图像中的目标并确定其位置。本文将介绍如何使用Python和TensorFlow实现这两个任务,并提供详细的代码示例。
近十年来,目标检测已经成为计算机视觉领域的核心话题。这种日益增长的兴趣源于自动驾驶、人群计数、异常检测和智能视频监控等新挑战。因此,多年来已经开发出了许多创新型的神经网络,如Faster R-CNN [4],YOLO [5],SSD [6]和DETR [7]。大多数这些架构的性能都是通过像Pascal VOC [8],Open Images [9]和MS-COCO [1]这样的广泛使用的数据集进行评估和比较的。
所有的标注图片都有Detection需要的label, 但只有部分数据有Segmentation Label。 VOC2007中包含9963张标注过的图片, 由train/val/test三部分组成, 共标注出24,640个物体。 VOC2007的test数据label已经公布, 之后的没有公布(只有图片,没有label)。 对于检测任务,VOC2012的trainval/test包含08-11年的所有对应图片。 trainval有11540张图片共27450个物体。 对于分割任务, VOC2012的trainval包含07-11年的所有对应图片, test只包含08-11。trainval有 2913张图片共6929个物体。
2D Human Pose Estimation (以下简称 2D HPE )旨在从图像或者视频中预测人体关节点(或称关键点,比如头,左手,右脚等)的二维空间位置坐标。2D HPE 的应用场景非常广泛,包括动作识别,动画生成,增强现实等。
这次带队参加了ICCV2021的UVO(Unidentified Video Objects) Challenge,本次比赛共有两个赛道,分别为基于图片的开放世界实例分割和基于视频的开放世界实例分割。我们运气不错,拿下了本次比赛两个赛道的冠军。以下为本次比赛介绍和我们的方法简介。
这是在EfficientDet:可伸缩和有效对象检测一 文中描述的模型的pytorch实现(注意:还提供了预训练的权重,可以在./trained_models中看到)
文章结构 检测模型的评测指标 目标检测模型本源上可以用统计推断的框架描述,我们关注其犯第一类错误和第二类错误的概率,通常用准确率和召回率来描述。准确率描述了模型有多准,即在预测为正例的结果中,有多少是
翻译 | AI科技大本营(ID:rgznai100) 参与 | shawn,刘畅 今年10月,何恺明的论文“Mask R-CNN”摘下ICCV 2017的最佳论文奖(Best Paper Award),如今,何恺明团队在Mask R-CNN的基础上更近一步,推出了 (以下称Mask^X R-CNN)。 这篇论文的第一作者是伯克利大学的在读博士生胡戎航(清华大学毕业),标题非常霸气,叫是“Learning to Segment Every Thing”。从标题上可以看出,这是一篇在实例分割问题(
本文将详细介绍目标检测中的平均精度(mAP),建议收藏并掌握。(公众号:OpenCV与AI深度学习)
今天,“计算机视觉”给大家介绍一个新的大型目标检测数据集Objects365,它拥有超过600,000个图像,365个类别和超过1000万个高质量的边界框。由精心设计的三步注释管道手动标记,它是迄今为止最大的对象检测数据集合(带有完整注释),并为社区创建了更具挑战性的基准。
随着最新的 Pythorc1.3 版本的发布,下一代完全重写了它以前的目标检测框架,新的目标检测框架被称为 Detectron2。本教程将通过使用自定义 COCO 数据集训练实例分割模型,帮助你开始使用此框架。如果你不知道如何创建 COCO 数据集,请阅读我之前的文章——如何创建自定义 COCO 数据集用于实例分割(https://www.dlology.com/blog/how-to-create-custom-coco-data-set-for-instance-segmentation/)。
昨日,在旷视科技联合北京智源人工智能研究院举办的发布会上,旷视研究院发布了物体检测数据集 Objects365,包含 63 万张图像数量,365 个类别数量,高达 1000 万的框数。旷视首席科学家兼研究院院长孙剑在活动上表示,该数据集也是新一代通用物体检测数据集,具有规模大、质量高、泛化能力强的特点。
目标检测支持许多视觉任务,如实例分割、姿态估计、跟踪和动作识别,这些计算机视觉任务在监控、自动驾驶和视觉答疑等领域有着广泛的应用。随着这种广泛的实际应用,目标检测自然成为一个活跃的研究领域。
选自arXiv 机器之心编译 参与:Jane W,吴攀 印度理工学院 Akshay Kumar Gupta 近日发布了一篇论文,对视觉问答方面的数据集和技术进行了盘点和比较。机器之心对本文内容进行
从今天开始,我将为大家逐步介绍Mask RCNN这个将检测和分割统一起来的框架的具体原理以及详细代码解读,项目地址为https://github.com/matterport/Mask_RCNN,基于TensorFlow1.x和Keras框架实现。
选自arXiv 作者:Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos 机器之心编译 参与:Panda 实现从 2D 图像到 3D 表面的对应在很多方面都有极具价值的应用前景。近日,FAIR 发布了一篇研究论文,介绍了他们通过人工方式标注的图像到表面密集对应数据集 DensePose-COCO 以及基于此训练的 DensePose-RCNN 架构,得到了一个能实时地得到高准确度结果的系统。该研究发布后得到了广泛的关注,机器之心在此对该论文进行了摘要介绍,更
本文对VLM领域多个任务的常见数据集和benchmark做了简要介绍,以方便读友看论文时参考。
YOLO 算法是非常著名的目标检测算法。从其全称 You Only Look Once: Unified, Real-Time Object Detection ,可以看出它的特性:
目标检测算法很多,但那些在COCO等数据集上登顶的算法往往模型较大、计算复杂度高,其实大家更关心的是“开源”且“实时”目标检测方法。
内容提要:OpenAI 团队的新模型 DALL-E 刷屏,这一新型神经网络,使用 120 亿参数,经过「特训」,任意描述性文字输入后,都可以生成相应图像。如今,团队将这一项目的论文和部分模块代码开源,让我们得以了解这一神器背后的原理。
目标检测算法,pipeline太复杂?不同任务人工设计不同的非极大值抑制(NMS)阈值、生成新的锚点(Anchor)?是不是直接戳中了各位开发者的痛点!莫慌,今天小编就为万千开发者破局~这个破局点就是:基于transform的目标检测算法DETR,简洁的pipeline,去除NMS、Anchor设计,且在COCO数据集上的指标与Faster RCNN相当。
近日,飞桨开源了比赛中使用的MSF-DET,助力大规模图像目标检测算法的研究探索和落地应用。
选自skrish13 作者:Krish 参与:路雪、刘晓坤 本文概述了 2017年Facebook AI 研究院(FAIR)在计算机视觉上的研究进展,包括基础构建模块创新、CNN、one shot 目标检测模块等,然后介绍实例分割方面的创新,最后介绍用弱半监督方式来扩展实例分割。 特征金字塔网络(FPN) 首先我们先来介绍著名的特征金字塔网络 [1](发表在 CVPR 2017 上)。FPN 论文非常棒,要知道,构建一个可在多项任务、子主题和应用领域中使用的基线模型并不简单。FPN 是通用特征提取网络(如
相信大家都或多或少的熟悉一些检测器,不知道你是否思考过这样一个问题?FPN的多特征图融合方式一定是最好的吗?如果你看过【CV中的特征金字塔】一,工程价值极大的ASFF这篇论文的话,你应该知道这篇论文的出发点就是如何对不同尺度的特征做自适应特征融合(感觉也可以叫作FPN+Attention),而非【CV中的特征金字塔】二,Feature Pyramid Network那样较为暴力的叠加(不知道这个说法是否稳妥,有意见欢迎来提)。而今天要介绍的这个SNIP(「An Analysis of Scale Invariance in Object Detection – SNIP」)算法,是CVPR 2018的文章,它的效果比同期的目标检测算法之CVPR 2018 Cascade R-CNN效果还好一些。为什么说这个算法是另辟蹊径呢?因为这个算法从COCO数据集开始分析,作者认为目标检测算法的难点在于「数据集中目标的尺寸分布比较大,尤其对小目标的检测效果不太好」,然后提出了本文的SNIP算法。
MaskRCNN 是何恺明基于以往的 faster rcnn 架构提出的新的卷积网络,一举完成了 object instance segmentation。该方法在有效地目标的同时完成了高质量的语义分割。文章的主要思路就是把原有的 Faster-RCNN 进行扩展,添加一个分支使用现有的检测对目标进行并行预测。
MS COCO 的全称是常见物体图像识别(Microsoft Common Objects in Context),起源于是微软于2014年出资标注的Microsoft COCO数据集,同名竞赛与此前著名的 ImageNet 竞赛一样,被视为是计算机视觉领域最受关注和最权威的比赛之一。
论文标题:Benchmarking a Benchmark: How Reliable is MS-COCO?
很多朋友在学习了神经网络和深度学习之后,早已迫不及待要开始动手实战了。第一个遇到的问题通常就是数据。作为个人学习和实验来说,很难获得像工业界那样较高质量的贴近实际应用的大量数据集,这时候一些公开数据集往往就成了大家通往AI路上的反复摩擦的对象。
上次整理了近期目标检测比较亮眼的论文汇总,详见: 一文看尽8篇目标检测最新论文(EfficientDet/EdgeNet/ASFF/RoIMix/SCL/EFGRNet等)。很多CVers在后台和微信社群反映:这些都是很新的论文,我刚入门都看不懂怎么办?
选自skrish13 作者:Krish 机器之心编译 参与:路雪、刘晓坤 本文概述了 2017年Facebook AI 研究院(FAIR)在计算机视觉上的研究进展,包括基础构建模块创新、CNN、one shot 目标检测模块等,然后介绍实例分割方面的创新,最后介绍用弱半监督方式来扩展实例分割。 特征金字塔网络(FPN) 首先我们先来介绍著名的特征金字塔网络 [1](发表在 CVPR 2017 上)。FPN 论文非常棒,要知道,构建一个可在多项任务、子主题和应用领域中使用的基线模型并不简单。FPN 是通用特
以监控摄像头数据集的人体检测模型为例,说明了如何通过对数据的理解来逐步提升模型的效果,不对模型做任何改动,将mAP从0.46提升到了0.79。
迁移学习指的是,通过对预训练模型的参数进行微调,将训练好的模型应用到相似或者只有细微差异的不同任务中。通过这个方法,我们可以基于一些性能顶尖的深度学习模型得到别的高性能模型。尽管听上去较为简单,迁移学习仍然在预处理、搭建和测试上有很多的研究空间。
选自arXiv 作者:Ronghang Hu 等 机器之心编译 参与:路雪、蒋思源 伯克利和 FAIR 研究人员提出一种新型实例分割模型,该模型能利用目标检测边界框学习对应的分割掩码,因此大大加强了实例分割的目标数量。这种将目标检测的知识迁移到实例分割任务的方法可能是我们以后需要关注的优秀方法,机器之心对这篇论文进行了简要地介绍,更详细的内容请查看原论文。 近来目标检测器准确度显著提升,获得了很多重要的新能力。其中最令人兴奋的一项是为每个检测目标预测前景分割掩码,即实例分割(instance segment
现在,有位热心公益的程序猿 (Yunyang1994) ,为它做了纯TensorFlow代码实现。
MS COCO的全称是Microsoft Common Objects in Context,起源于微软于2014年出资标注的Microsoft COCO数据集,与ImageNet竞赛一样,被视为是计算机视觉领域最受关注和最权威的比赛之一。 COCO数据集是一个大型的、丰富的物体检测,分割和字幕数据集。这个数据集以scene understanding为目标,主要从复杂的日常场景中截取,图像中的目标通过精确的segmentation进行位置的标定。图像包括91类目标,328,000影像和2,500,000个label。目前为止有语义分割的最大数据集,提供的类别有80 类,有超过33 万张图片,其中20 万张有标注,整个数据集中个体的数目超过150 万个。
这篇文章是何恺明组做的一个偏实验的工作,主要是探究ImageNet预训练的模型,在迁移到其他任务比如目标检测,分割等会不会比从头训练模型的要更好。可以总结一下就是
安妮 编译自 Google Research Blog 量子位 出品 | 公众号 QbitAI AutoML对开发者来说不是个陌生词汇了。 半年前Google I/O开发者大会上,谷歌推出能自动设计机
在目标检测中有很多常用的数据标注工具,如LabelImg、Labelme等等,经过标注生成的格式各不相同,但基本符合几大数据集的标注格式。
翻译 | 人工智能头条(ID:AI_Thinker) 参与 | 林椿眄 本文概述了 Facebook AI Research(FAIR)近期在计算机视觉领域的研究进展,内容主要包括基础结构模块的创新、卷积神经网络、one shot 检测模块等,以及一些在实例分割方面的创新方法,并介绍了弱半监督学习方式下实例分割的研究进展。下面将逐一介绍,文中的一些引用可在文末的参考文献中找到。 ▌Feature Pyramid Networks( 特征金字塔网络) 首先,我们要介绍的是著名的特征金字塔网络[1](这是发表在
数据的准备工作是训练模型前的必要工作,显然这也是非常耗时的,所以在入门阶段我们完全可以用现有的开源图片库快速完成前期的准备工作:
在如今深度学习的领域中,如果把数据比作老K,用以确保数据格式正确的就是Q,或者至少也得是J或者10,由此你可以看出它相当重要。在努力收集图像并注释所有的对象之后,你需要决定用什么格式来存储所有的信息。与其他你需要担心的事情相比,做这个决定似乎不算困难,但如果你想看到不同模型在数据上的表现差异多大,这一步是至关重要的。
MMDetection 是一个由 OpenMMLab 开发的开源目标检测工具箱,基于 PyTorch 实现。该库提供了丰富的目标检测算法,包括经典的 Faster R-CNN、YOLO 和最新的一些研究成果,非常方便于研究者和工程师进行模型的训练和推理。具有高度模块化和可扩展性的设计,使得用户可以非常灵活地进行个性化配置和二次开发。这一工具箱已经成为目标检测领域的事实标准之一,被广泛应用于学术研究和产业界。
领取专属 10元无门槛券
手把手带您无忧上云