首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    为什么大厂做AI训练都选择英伟达而不是英特尔AMD

    大厂选择英伟达的GPU进行AI训练,而非英特尔或AMD的产品,主要是基于以下几个原因: 1. CUDA生态系统的成熟: 英伟达的CUDA编程平台是最早且最为成熟的GPU并行计算框架之一,提供了丰富的库和工具,如cuDNN、TensorRT等,这些专门为深度学习优化的库极大地简化了开发流程。开发者社区对CUDA的广泛支持意味着更多现成的AI模型、框架和工具可以直接在英伟达GPU上运行,降低了开发成本和时间。 2. 性能优势: 英伟达在GPU架构设计上持续创新,特别是在AI训练所需的浮点运算、张量运算等方面,其GPU(如A100、H100及后续的新GPU)提供了高性能和高吞吐量,适合大规模并行计算任务。英伟达的Tensor Cores专门针对深度学习中的矩阵乘法和张量运算做了优化,大幅提升了训练效率。 3. 市场先发优势: 英伟达较早认识到GPU在AI领域的潜力,并迅速占据了市场主导地位。这种先发优势让英伟达在AI训练硬件领域积累了大量用户案例和成功故事,形成了一定程度的行业标准效应。 4. 软件和硬件的紧密结合: 英伟达不仅提供硬件,还有一整套从底层驱动到高层应用软件的解决方案,确保了硬件性能的充分发挥。此外,英伟达持续更新的软件栈和工具链,使得开发者可以轻松地调优和监控AI训练过程。 5. 行业合作与支持: 英伟达与众多AI领域的研究机构、企业和云服务商建立了紧密的合作关系,为用户提供从硬件到云服务的全方位支持。这种生态系统为用户提供了便利,也加强了英伟达在市场的地位。 尽管英特尔和AMD近年来在AI领域加大了投资,推出了专门针对AI训练的加速器(如英特尔的Gaudi系列和AMD的MI300),并努力构建自己的软件生态系统,但英伟达在AI训练市场的领先地位短期内仍难以撼动,主要是因为其深厚的技术积累、成熟的生态系统以及广泛的认可度。然而,随着竞争者的不断追赶和技术的发展,未来的市场格局仍有可能发生变化。

    01

    第四代算力革命(三):面向未来十年的新一代计算架构

    编者按: 新华社北京2022年2月17日电,记者了解到,国家发展改革委、中央网信办、工业和信息化部、国家能源局近日联合印发文件,同意在京津冀、长三角、粤港澳大湾区、成渝、内蒙古、贵州、甘肃、宁夏启动建设国家算力枢纽节点,并规划了张家口集群等10个国家数据中心集群。至此,全国一体化大数据中心体系完成总体布局设计,“东数西算”工程正式全面启动。 当前,算力已成为全球战略竞争新焦点,是国民经济发展的重要引擎,全球各国的算力水平与经济发展水平呈现显著的正相关。在2020年全球算力中,美国占36%,中国占31%,欧洲

    00

    哪种芯片架构将成为人工智能时代的开路先锋

    【IT168 评论】如果用刀来比喻芯片,通用处理器好比一把瑞士军刀,人工智能时代好比要拿刀来切肉,瑞士军刀可以拿来用,但它并非是为切肉设计的,所以效果并非最好。因此,需要专门打造一把切肉的刀,这把刀既要方便切肉,又要方便剁骨头,还需要具有一定的通用性。 从技术上而言,深度学习的人工神经网络算法与传统计算模式不同,它能够从输入的大量数据中自发的总结出规律,从而举一反三,泛化至从未见过的案例中。因此,它不需要人为的提取所需解决问题的特征或者总结规律来进行编程。人工神经网络算法实际上是通过大量样本数据训练建立了输

    06
    领券