D3指的是Data-Driven Documents,js即Javascript,是后缀名。先看看官网上对D3.js库的定义:
数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。如果你仍然坚持使用Matplotlib(这太神奇了),Seaborn(这也很神奇),Pandas(基本,简单的可视化)和Bokeh,那么你真的需要停下来了解一下新事物了。例如,python中有许多令人惊叹的可视化库,而且通用化程度已经很高,例如下面这五个:
如果您了解并使用上面提到的库,那么您就处于进化的正确轨道上。它们可以帮助生成一些令人拍案的可视化效果,语法也不难。一般来说,我更喜欢Plotly+Cufflinks和 D3.js. 以下详细道来:
在之前的文章D3.js库-2-选择元素和绑定数据中,有介绍过D3.js中的两种选择数据的方法,本部分为重复内容,温故而知新:
在现代Web开发中,数据可视化已成为展示复杂数据集的关键技术之一。D3.js(Data-Driven Documents)是一个强大的JavaScript库,用于创建动态、交互式的可视化图表。无论是简单的条形图还是复杂的地理热力图,D3.js都能提供灵活且深度的控制。本文旨在为初学者介绍D3.js的基础知识,探讨一些常见的问题及易错点,并提供解决方案和代码示例。
上一篇文章「安利一些不错的D3.js资源 - 牛衣古柳 2021.06.29」的反响还不错,记得有新群友说是主管推给她文章才加过来的,也是很神奇。
在升级了DeveMobile 主题的时候Jeff 也顺便将主题主页进行了更新,访问主页你会看到首屏的Low-Poly 背景(每次刷新都不同),这个效果就是利用了d3.js 与Trianglify 制作
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。
数据可视化之初级篇 零编程工具 1. Tableau Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决
阅读目录 D3.js — Data-Driven Documents Google Charts ChartJS Chartist.js n3-charts Ember Charts Smoothie Charts Chartkick ZingChart Highcharts JS Fusioncharts Flot amCharts EJS Chart uvCharts 几乎所有的控制面板都会用到图表,它们能够快速有效的展示复杂的统计。此外,一个好的图也可以提高你的网站的整体设计。 这篇文章为大家展示一些
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。Tableau的客户包括巴克莱银行,Pandora和Citrix等企业
在上篇文章中(D3.js 力导向图的显示优化),我们说过 D3.js 在自定义图形上相较于其他开源可视化库的优势,以及如何对文档对象模型(DOM)进行灵活操作。既然 D3.js 辣么灵活,那是不是实现很多我们想做的事情呢?在本文中,我们将借助 D3.js 的灵活性这一优势,去新增一些 D3.js 本身并不支持但我们想要的一些常见的功能。
注:本文有点长,可以点赞?收藏后慢慢看。另外有本文未涉及的、大家觉得不错的D3.js资源教程也欢迎评论进行分享。 前言 从「年更博主冒个泡,或将开启可视化之旅 - 牛衣古柳 - 2020.08.27」
例如:如果网页中有一个数字2和元素X,D3.js库就可以将它们绑定在一起。绑定数据的两个函数为:
大家好,又见面了,我是你们的朋友全栈君。 D3.js + Canvas 绘制组织结构图 使用 D3.js 默认的 svg 渲染 D3默认的树状图画图使用的是svg 使用svg有好有坏: 好处是方便操作
ECharts 是一个基于 JavaScript 的开源可视化图表库,涵盖各行业图表,多达20多种图表和十几种组件,支持各种图表和组件的任意组合,满足各种需求,也是前端项目中大屏应用最多的。
今天新来的实习生需要对部分分类文本进行多标签的检测,即根据已构建好的一、二级标签Excel文档,对众包平台人工标注的数据以及机器标注的数据进行评测。
今天新来的实习生需要对部分分类文本进行多标签的检测,即根据已构建好的一、二级标签Excel文档,对众包平台人工标注的数据以及机器标注的数据进行评测。 此情此景,让我想起了曾经在实验做的文本多标签分类的工作,所以就想用Echart 或D3.js实现层级标签可视化为一个Tree的结构,方便实习生们查阅,提高工作效率。 说干就干!
作为一个前端,说到可视化除了听过 D3.js 的大名,常见的可视化库还有 ECharts、Chart.js,这两个库功能也很强大,但是有一个共同特点是封装层次高,留给开发者可设计和控制的部分太少。和 EChart、Chart.js 等相比,D3.js** 的相对来说自由度会高很多,得益于 D3.js 中的 SVG 画图对事件处理器的支持**,D3.js 可将任意数据绑定到文档对象模型(DOM)上,也可以直接操作对象模型(DOM)完成 W3C DOM API 相关操作,对于想要展示自己设计图形的开发者,D3.js 绝对是一个不错的选择。
D3.js是一个JavaScript库。它的全称是Data-Driven Documents(数据驱动文档),并且它被称为一个互动和动态的数据可视化库网络。2011年2月首次发布,在撰写本文时,最新的稳定版本是4.4版本,并且不断更新。D3利用可缩放矢量图形或SVG格式,允许您渲染可放大或缩小的形状,线条和填充,而不会降低质量。本教程将指导您使用JavaScript D3库创建条形图。
SVG,指可缩放矢量图形(Scalable Vector Graphics),是用于描述二维矢量图形的一种图形格式,是由万维网联盟制定的开放标准。 SVG 使用 XML 格式来定义图形。SVG的几个特点
从数据获得信息的最佳方式之一是,通过视觉化方式,快速抓住要点信息。另外,通过视觉化呈现数据,也揭示了令人惊奇的模式和观察结果,是不可能通过简单统计就能显而易见看到的模式和结论。
D3近年来一直是 JavaScript最重要的数据可视化库之一,在创建者 MikeBostock的维护下,前景依然无量,至少现在没有能打的:
在这篇文章中,我向大家介绍前5名最好的开源JavaScript图表库。每个站点的仪表板都是不完整的,因为他们缺少图表,所以为我们的站点找到正确的图表库是非常重要的。以下库可以帮助你在站点创建可自定义和美观的图表。 D3.js - 数据驱动的文档 D3.js是一个开源的JavaScript库,用于根据用户数据处理文档。这是一个强大的工具,通过HTML,SVG和CSS的帮助,赋予数据生命。 D3允许开发人员将任意数据绑定到DOM,然后将数据驱动的转换应用到DOM。例如:考虑一个数组数组,您可以使用它来生成一
爱德华·图夫特(Edward Tufte)在他的“展望信息”(Envisioning Information)一书中谈到了视觉形象被捕获在屏幕和纸张的二维平原中[1]。想探索另一种可视化数据的方法,因此寻找一种创造性的方法来激发观众的兴奋,逃离计算机屏幕的平地。诸如增强现实之类的技术通过向已经存在的内容添加层来实现这一点; 但是选择了更简单,更便宜的东西。使用一张塑料片,创造了一个数据可视化的全息幻觉。
网页演示:https://desertsx.github.io/dataviz-in-action/02-eschers-gallery/index.html
导语:今天我们带来一篇来自 Adobe 工程师 Rohit Boggarapu 的文章。他在文章中介绍了一些适合网页开发者的数据可视化和绘图工具,让你不必再花大力气与枯燥的数据抗争。部分工具不要求写代码也可以使用!
一台做手机app应用的服务器在某云上,很好奇如果没有修改ssh端口的情况下,每天会被暴力破解多少次呢?带着这个疑问,查看一下/var/log/messages的日志,grep一下里面多少含有"Failed"的日志记录。。。
D3.js D3的全称是Data-Driven Documents(数据驱动的文档),是一个用来做数据可视化的JavaScript函数库,而JavaScript文件的后缀通常为.js,所以D3被称为D
D3.js D3的全称是Data-Driven Documents(数据驱动的文档),是一个用来做数据可视化的JavaScript函数库,而JavaScript文件的后缀通常为.js,所以D3被称为D3.js。 对D3来说,柱形图、散点图、折线图、饼图、弦图、力导向图、树状图等等都不在话下。总之,只要你愿意写代码,D3.js可以满足你对数据可视化的一切幻想。 今天我们以弦图为例进行介绍。 弦图 弦图主要用于表示两个节点之间的联系。两点之间的连线表示二者具有联系,线的粗细表示权重。 下面是之前做的一张电影类型
在过去的两年里,我们看到很多数据可视化基于新冠疫情开展研究工作。这些可视化图表通过为我们提供有关特定城市/地区病例数的信息,帮助人们更快捷地理解疫情的发展情况。
在过去的两年里,我们看到很多数据可视化基于新冠疫情开展研究工作。 这些可视化图表通过为我们提供有关特定城市/地区病例数的信息,帮助人们更快捷地理解疫情的发展情况。
这里,通过attr()给每个div添加bar类。使用style()修改每个div的高度。
首先,我们需要一个HTML文件来引入D3.js库,并准备一个画布来放置我们的图表。
现代社会早已进入读图时代,图像在一定上程度上取代了文字,占据了主导地位。对于数据分析来说,一张清晰的可视化图表确实比纷繁复杂的数字更清晰美观。随着科技的发展以及可视化需求的急剧增大,涌现了大批的数据可视化工具,通过对比分析市面上众多的数据可视化工具之后,我们挑选了几款给大家进行参考。
在 JS 程序中,为了实现漂亮的图形、图表和数据可视化,我们选择使用开源库。生活在数据爆炸的时代,我们开发的每一个应用程序几乎都使用或者借助数据来提升用户体验。为了帮助你轻松地为你最喜欢的应用程序添加漂亮的数据可视化,这里列出了 2019 年最好的 JavaScript 数据可视化库(排名不分先后)。
本系列配套代码和用到的数据都会开源到这个仓库,欢迎大家 Star,https://github.com/DesertsX/d3-tutorial
数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像, 同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。 图表库 C3 – 以 d3 为基础构建的可重用图表库 Chart.js – 带有 canvas 标签的图表 Chartist.js – 具有强大浏览器兼容能力的响应式图表 Dimple – 适用于业务分析的面向对象的 API Dygraphs – 适用于大型数据集的交互式线性图表库 Echarts – 针对
D3.js提供了多种工具支持数据可视化的交互,其中d3.transition让简单而高效的为图像添加动画成为了可能。
本系列 D3.js 数据可视化文章是古柳按照自己想写的逻辑来写的,可能和网上的教程都不太一样,至于会写多少篇、写成什么样,古柳也完全心里没数,虽然是奔着初学者也能轻松看懂的目标去的,但真的大家看完觉得有什么感受,古柳也不清楚,所以希望大家多多反馈,后续文章能改进的也继续改进,并且有机会的话基于这个系列再出个视频教程,但那是后话了。
使用 d3.select() 或 d3.selectAll() 选择元素后返回的对象,就是选择集。
随着互联网在各行各业的影响不断深入,数据规模越来越大,各企业也越来越重视数据的价值。作为一家专业的数据智能公司,个推从消息推送服务起家,经过多年的持续耕耘,积累沉淀了海量数据,在数据可视化领域也开展了深入的探索和实践。
0.说在前面1.d3.js初识2.绘制完整的柱形图3.让图表动起来4.浅析Update、Enter、Exit5.交互式操作6.作者的话
细看上面的动态效果图,可以发现: 一个值变换到一个新的值时,是一个渐变的过程; 圆弧末尾有一个竖线,作为仪表盘的指针,在仪表盘数值变化时,有一个弹性的动画效果。 一开始,我是用Echarts来实现仪表
领取专属 10元无门槛券
手把手带您无忧上云