在上篇文章中(D3.js 力导向图的显示优化),我们说过 D3.js 在自定义图形上相较于其他开源可视化库的优势,以及如何对文档对象模型(DOM)进行灵活操作。既然 D3.js 辣么灵活,那是不是实现很多我们想做的事情呢?在本文中,我们将借助 D3.js 的灵活性这一优势,去新增一些 D3.js 本身并不支持但我们想要的一些常见的功能。
D3指的是Data-Driven Documents,js即Javascript,是后缀名。先看看官网上对D3.js库的定义:
在现代Web开发中,数据可视化已成为展示复杂数据集的关键技术之一。D3.js(Data-Driven Documents)是一个强大的JavaScript库,用于创建动态、交互式的可视化图表。无论是简单的条形图还是复杂的地理热力图,D3.js都能提供灵活且深度的控制。本文旨在为初学者介绍D3.js的基础知识,探讨一些常见的问题及易错点,并提供解决方案和代码示例。
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。
数据可视化之初级篇 零编程工具 1. Tableau Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。Tableau的客户包括巴克莱银行,Pandora和Citrix等企业
从数据获得信息的最佳方式之一是,通过视觉化方式,快速抓住要点信息。另外,通过视觉化呈现数据,也揭示了令人惊奇的模式和观察结果,是不可能通过简单统计就能显而易见看到的模式和结论。
最近接到一个项目,其中有一个小需求我觉得可以稍微沉淀一下,首先是d3.js的简单应用,还有就是swiper的调试费了一定的时间
随着数据收集和使用持续呈指数级增长,对这些数据进行可视化的需求变得越来越重要。开发人员寻求将数百万个数据库记录整合到美丽的图表和仪表板中,人类可以快速直观地解释这些记录。
引言 最近,我一直在看美国德克萨斯州奥斯汀举办的SciPy 2015会议上的一段视频——“用Blaze和Bokeh创建Python数据应用程序”,并且情不自禁地反复思考这两个库赋予世界各地使用Python的数据科学家们的强大能力。在本文中,我将带你体验使用Bokeh实现数据可视化的各种可能途径,以及Bokeh为什么是每位数据科学家的必备“神器”。 什么是Bokeh? Bokeh是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别。正如下图所示,它说明了B
D3.js D3的全称是Data-Driven Documents(数据驱动的文档),是一个用来做数据可视化的JavaScript函数库,而JavaScript文件的后缀通常为.js,所以D3被称为D3.js。 对D3来说,柱形图、散点图、折线图、饼图、弦图、力导向图、树状图等等都不在话下。总之,只要你愿意写代码,D3.js可以满足你对数据可视化的一切幻想。 今天我们以弦图为例进行介绍。 弦图 弦图主要用于表示两个节点之间的联系。两点之间的连线表示二者具有联系,线的粗细表示权重。 下面是之前做的一张电影类型
注:本文有点长,可以点赞?收藏后慢慢看。另外有本文未涉及的、大家觉得不错的D3.js资源教程也欢迎评论进行分享。 前言 从「年更博主冒个泡,或将开启可视化之旅 - 牛衣古柳 - 2020.08.27」
D3.js D3的全称是Data-Driven Documents(数据驱动的文档),是一个用来做数据可视化的JavaScript函数库,而JavaScript文件的后缀通常为.js,所以D3被称为D
SVG,指可缩放矢量图形(Scalable Vector Graphics),是用于描述二维矢量图形的一种图形格式,是由万维网联盟制定的开放标准。 SVG 使用 XML 格式来定义图形。SVG的几个特点
关于转载授权 大数据文摘作品,欢迎个人转发朋友圈,自媒体、媒体、机构转载务必申请授权,后台留言“机构名称+文章标题+转载”,申请过授权的不必再次申请,只要按约定转载即可,但文末需放置大数据文摘二维码。 大数据文摘愿意为读者打造高质量【可视化讨论群】,措施如下 (1)群内定期组织分享 (2)确保群内分享者和学习者数量适合(1:1),有分享能力者不限名额,学习者数量少于分享者,按申请顺序排序。 点击文末“阅读原文”填表入群 编译:黄念 席雄芬 校对:王婧 图片来源:bokeh.pyda
众多周知,图形和图表要比文本更具表现力和说服力。图表是数据图形化的表示,通过形象的图表来展示数据,比如条形图,折线图,饼图等等。可视化图表可以帮助开发者更容易理解复杂的数据,提高生产的效率和 Web 应用和项目的可靠性。
知识图谱项目是一个强视觉交互性的关系图可视化分析系统,很多模块都会涉及到对节点和关系的增删改查操作,常规的列表展示类数据通过表格展示,表单新增或编辑,而图谱类项目通常需要关系图(力导向图:又叫力学图、力导向布局图,是绘图的一种算法,关系图一般采用这种布局方式)去展示,节点和关系的新增编辑也需要前端去做一些复杂的交互设计。除此之外还有节点和关系的各种布局算法,大量数据展示的性能优化,节点动态展开时的局部布局渲染,画布的可扩展性,样式的自定义等等诸多技术难点。目前国内使用最多的两个已开源的前端可视化框架:阿里的AntV、百度的Echarts对于关系图的支持都比较弱,不能完全满足项目中的需求。
作为一个前端,说到可视化除了听过 D3.js 的大名,常见的可视化库还有 ECharts、Chart.js,这两个库功能也很强大,但是有一个共同特点是封装层次高,留给开发者可设计和控制的部分太少。和 EChart、Chart.js 等相比,D3.js** 的相对来说自由度会高很多,得益于 D3.js 中的 SVG 画图对事件处理器的支持**,D3.js 可将任意数据绑定到文档对象模型(DOM)上,也可以直接操作对象模型(DOM)完成 W3C DOM API 相关操作,对于想要展示自己设计图形的开发者,D3.js 绝对是一个不错的选择。
在之前的文章D3.js库-2-选择元素和绑定数据中,有介绍过D3.js中的两种选择数据的方法,本部分为重复内容,温故而知新:
编译:黄念 席雄芬 校对:王婧 图片来源:bokeh.pydata.org ◆ ◆ ◆ 引言 最近,我一直在看美国德克萨斯州奥斯汀举办的SciPy 2015会议上的一段视频——“用Blaze和Bokeh创建Python数据应用程序”,并且情不自禁地反复思考这两个库赋予世界各地使用Python的数据科学家们的强大能力。在本文中,我将带你体验使用Bokeh实现数据可视化的各种可能途径,以及Bokeh为什么是每位数据科学家的必备“神器”。 ◆ ◆ ◆ 什么是Bokeh Bokeh是一个
上篇文章迄今复现过最复杂的可视化作品之「大西洋古抄本」(上)里讲到复杂交互一直是古柳的瓶颈。 链接:www.codex-atlanticus.it/#/
在很多项目中都会有在前端展现数据图表的需求,而在开发过程中,开发者往往会使用一些JavaScript库,从而更有效地达到想要的目标。最近,TechSlide上的一篇文章总结了50种用于展现图表的JavaScript库,并对每种库做了简要的说明。这对于想要选择合适JavaScript库的开发者很有参考意义。
在升级了DeveMobile 主题的时候Jeff 也顺便将主题主页进行了更新,访问主页你会看到首屏的Low-Poly 背景(每次刷新都不同),这个效果就是利用了d3.js 与Trianglify 制作
大家好,又见面了,我是你们的朋友全栈君。 D3.js + Canvas 绘制组织结构图 使用 D3.js 默认的 svg 渲染 D3默认的树状图画图使用的是svg 使用svg有好有坏: 好处是方便操作
ECharts 是一个基于 JavaScript 的开源可视化图表库,涵盖各行业图表,多达20多种图表和十几种组件,支持各种图表和组件的任意组合,满足各种需求,也是前端项目中大屏应用最多的。
上一篇文章「安利一些不错的D3.js资源 - 牛衣古柳 2021.06.29」的反响还不错,记得有新群友说是主管推给她文章才加过来的,也是很神奇。
RAWGraphs是一个在线的开源工具和数据可视化框架,用来处理Excel表中的数据。你只需将数据导入到RAWGraphs中,设计你想要的图表,然后将其导出为SVG格式或PNG格式的图片。此外,上传至RAWGraphs的数据只会在web端在线进行处理,保证了数据的安全性。
总第501篇 2022年 第018篇 知识图谱可视化可以更直观地查看和分析知识图谱的数据。本文主要介绍了美团平台在布局策略、视觉降噪、交互功能、可视化叙事、3D图谱可视化等方面的一些实践和探索,同时沉淀出了uni-graph图可视化解决方案,并支持了美团的很多业务场景,包括美团大脑、图数据库、智能IT运维、组件依赖分析、行业领域图谱等。希望能对从事知识图谱可视化方向的同学有所帮助或启发。 1 知识图谱可视化基本概念 1.1 知识图谱技术的简介 1.2 知识图谱可视化的简介 2 场景分析与架构设计 2.1
数据可视化一直是一个很有趣的领域。许多普通人直观上难以感受的数据,如漏洞分布、实时流量分析等,通过数据可视化的手法,可以清晰地看出数据的结构特点和每一个部分之间的内在联系。 著名数据可视化库 D3.js 的部分应用 D3.js 可视化群关系,来自利用 d3.js 对大数据资料进行可视化分析 数据可视化除了常用的图表之类,与地理位置信息系统(GIS)的结合也是其中一个有趣的应用。 首先是数据的准备,要做全球的分布图,得有全网扫描的实力才行哦。HeartBleed 风波的当天晚上,ZoomEye 就给全球
数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。如果你仍然坚持使用Matplotlib(这太神奇了),Seaborn(这也很神奇),Pandas(基本,简单的可视化)和Bokeh,那么你真的需要停下来了解一下新事物了。例如,python中有许多令人惊叹的可视化库,而且通用化程度已经很高,例如下面这五个:
如果您了解并使用上面提到的库,那么您就处于进化的正确轨道上。它们可以帮助生成一些令人拍案的可视化效果,语法也不难。一般来说,我更喜欢Plotly+Cufflinks和 D3.js. 以下详细道来:
Video.js 是一个基于 HTML5 的视频播放器库。它支持大多数流行的视频格式,并且可以在多个平台和浏览器上使用。
D3.js是一个JavaScript库。它的全称是Data-Driven Documents(数据驱动文档),并且它被称为一个互动和动态的数据可视化库网络。2011年2月首次发布,在撰写本文时,最新的稳定版本是4.4版本,并且不断更新。D3利用可缩放矢量图形或SVG格式,允许您渲染可放大或缩小的形状,线条和填充,而不会降低质量。本教程将指导您使用JavaScript D3库创建条形图。
阅读目录 D3.js — Data-Driven Documents Google Charts ChartJS Chartist.js n3-charts Ember Charts Smoothie Charts Chartkick ZingChart Highcharts JS Fusioncharts Flot amCharts EJS Chart uvCharts 几乎所有的控制面板都会用到图表,它们能够快速有效的展示复杂的统计。此外,一个好的图也可以提高你的网站的整体设计。 这篇文章为大家展示一些
一直以来,许多产品平台都在尝试通过可视化搭建的手段来降低 GUI 应用的研发门槛,提高生产效率。随着我们业务的发展,数据建设的完善,用户对于数据可视化的诉求也日益增多,而数据大屏是数据可视化的其中一种展示方式,它作为大数据展示媒介的一种,被广泛运用于各种会展、公司展厅、发布会等。
数据可视化正在帮助全球公司识别模式,预测结果并提高业务回报。可视化是数据分析的一个重要方面。简而言之,数据可视化以可视格式传达表格或空间数据的结果。图像有能力吸引注意力并清晰地传达想法。这有助于决策制定并推动改进行动。
对于前段时间流出的QQ群数据大家想必已经有所了解了,处理后大小将近100G,多达15亿条关系数据(QQ号,群内昵称,群号,群内权限,群内性别和年龄)和将近9000万条群信息(群号,群名,创建时间,群介绍),这些数据都是扁平化的2维表格结构,直接查询不能直接体现出用户和群之间的直接或者间接关系。通过数据可视化,可以把扁平结构的数据作为点和线连接起来,从而更加直观的显示出来从而进行分析。 d3.js是一个近年来推出的基于javascript的数据展示库,全称为Data Driven Document, 在浏览器
导语:今天我们带来一篇来自 Adobe 工程师 Rohit Boggarapu 的文章。他在文章中介绍了一些适合网页开发者的数据可视化和绘图工具,让你不必再花大力气与枯燥的数据抗争。部分工具不要求写代码也可以使用!
图表对于数据的可视化和网站的吸引力非常重要。可视化演示使得分析大块数据和传达信息变得更加容易。 图表库使您能够以一种令人惊叹的、易于理解的和交互式的方式可视化数据,并改进您的网站设计。
想让数据变得更好看?不必成为经验丰富的数据科学家,也不必成为平面设计师。 有一些能让数据从简单的表格变成多种多样的图形,地图甚至词“云”。 并不是所有的工具都适合你,但这些工具确实很有用。 希望你不仅
爱德华·图夫特(Edward Tufte)在他的“展望信息”(Envisioning Information)一书中谈到了视觉形象被捕获在屏幕和纸张的二维平原中[1]。想探索另一种可视化数据的方法,因此寻找一种创造性的方法来激发观众的兴奋,逃离计算机屏幕的平地。诸如增强现实之类的技术通过向已经存在的内容添加层来实现这一点; 但是选择了更简单,更便宜的东西。使用一张塑料片,创造了一个数据可视化的全息幻觉。
今天新来的实习生需要对部分分类文本进行多标签的检测,即根据已构建好的一、二级标签Excel文档,对众包平台人工标注的数据以及机器标注的数据进行评测。
今天新来的实习生需要对部分分类文本进行多标签的检测,即根据已构建好的一、二级标签Excel文档,对众包平台人工标注的数据以及机器标注的数据进行评测。 此情此景,让我想起了曾经在实验做的文本多标签分类的工作,所以就想用Echart 或D3.js实现层级标签可视化为一个Tree的结构,方便实习生们查阅,提高工作效率。 说干就干!
很多情况下数据可视化 是理解和表达数据的有效手段 有时甚至是唯一的手段 大数据时代需要可视化工具 D3是世界最流行的可视化函数库 D3功能很强大 学习起来也很有挑战性 博文视点携重磅好书 以简单有趣的方式带您系统学习 让您对D3有更深的理解和整体把握 本书希望以无障碍而非面面俱到的方式全面介绍 D3的基础知识要点,带你轻松读懂和领会其他代码样例——换句话说,就是非常轻松地走进 D3的生态系统。 《图说D3:数据可视化利器从入门到进阶》 发掘数据驱动型故事,掌握数据可视化利器 【美】Ritchie S. K
领取专属 10元无门槛券
手把手带您无忧上云