这里的图数据特指布局后的图数据,主要包括顶点信息(ID和坐标等)以及边信息,先前已经写过如何使用Gephi来进行数据的可视化,具体文章见:
本系列 D3.js 数据可视化文章是古柳按照自己想写的逻辑来写的,可能和网上的教程都不太一样,至于会写多少篇、写成什么样,古柳也完全心里没数,虽然是奔着初学者也能轻松看懂的目标去的,但真的大家看完觉得有什么感受,古柳也不清楚,所以希望大家多多反馈,后续文章能改进的也继续改进,并且有机会的话基于这个系列再出个视频教程,但那是后话了。
今天新来的实习生需要对部分分类文本进行多标签的检测,即根据已构建好的一、二级标签Excel文档,对众包平台人工标注的数据以及机器标注的数据进行评测。 此情此景,让我想起了曾经在实验做的文本多标签分类的工作,所以就想用Echart 或D3.js实现层级标签可视化为一个Tree的结构,方便实习生们查阅,提高工作效率。 说干就干!
今天新来的实习生需要对部分分类文本进行多标签的检测,即根据已构建好的一、二级标签Excel文档,对众包平台人工标注的数据以及机器标注的数据进行评测。
嗯,没错,PyEcharts 就是这么骚!嗯,没错,PyEcharts 就是这么骚!
作者 | 小F 来源 | 法纳斯特 说实话,这一期起的有点标题党了。 用到的Python知识并不多,只是利用Python对数据进行规整。 最多的应该是用大佬造的轮子,基于D3.js的数据可视化项目。
昨天晚上看到一个关于股票的矩形树状图 (tree map),真的太酷了,传达的信息太多了。
一台做手机app应用的服务器在某云上,很好奇如果没有修改ssh端口的情况下,每天会被暴力破解多少次呢?带着这个疑问,查看一下/var/log/messages的日志,grep一下里面多少含有"Failed"的日志记录。。。
前面已经说过D3的功能十分强大,但是往往实际使用时只需要用到一部分内容,在这里,就只用到了 比例尺 和 布局 两部分,外加 核心 的请求部分(请求数据),分别用来绘制Graph的显示坐标轴和图的顶点及边;
在开源世界中,某些库为数据可视化提供了许多可能性,包括图形或网络表示。其他库仅专注于网络图表示。通常,这些库比通用库提供更多的功能。
对于前段时间流出的QQ群数据大家想必已经有所了解了,处理后大小将近100G,多达15亿条关系数据(QQ号,群内昵称,群号,群内权限,群内性别和年龄)和将近9000万条群信息(群号,群名,创建时间,群介绍),这些数据都是扁平化的2维表格结构,直接查询不能直接体现出用户和群之间的直接或者间接关系。通过数据可视化,可以把扁平结构的数据作为点和线连接起来,从而更加直观的显示出来从而进行分析。 d3.js是一个近年来推出的基于javascript的数据展示库,全称为Data Driven Document, 在浏览器
数据可视化正在帮助全球公司识别模式,预测结果并提高业务回报。可视化是数据分析的一个重要方面。简而言之,数据可视化以可视格式传达表格或空间数据的结果。图像有能力吸引注意力并清晰地传达想法。这有助于决策制定并推动改进行动。
散点图真是一个比较神奇的图形,正如它的名字一样,一堆纷乱如麻的圆点,看似无迹可寻却能显示出数据难以显示的内在逻辑关系。很多人称它“万表之王”,它在数据分析师手里已经演化成了一个强大的数据分析工具。 你一般会选择哪种工具来做数据可视化?Lisa Charlotte Rost从去年五月开始尝试了24种工具或语言来画一张气泡图,经过半年的学习实践发现没有完美的可视化工具,每个工具都有各自的优缺点,但是对于某些领域目的,还是有比较推荐的可视化工具。 以下红色的是软件,蓝色的是语言 越靠左越适合做数据分析,越靠右越
D3指的是Data-Driven Documents,js即Javascript,是后缀名。先看看官网上对D3.js库的定义:
旭日图是饼图的一种扩展,每一层都展示一组分类的比例。sunburstR可绘制交互式旭日图
摘要::最近在朋友圈看到一个很酷炫的动态数据可视化表,介绍了新中国成立后各省GDP的发展历程,非常惊叹竟然还有这种操作,也想试试。于是,照葫芦画瓢虎,在网上爬取了历年中国大学学术排行榜,制作了一个中国大学排名Top20强动态表。
数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像, 同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。 图表库 C3 – 以 d3 为基础构建的可重用图表库 Chart.js – 带有 canvas 标签的图表 Chartist.js – 具有强大浏览器兼容能力的响应式图表 Dimple – 适用于业务分析的面向对象的 API Dygraphs – 适用于大型数据集的交互式线性图表库 Echarts – 针对
人脑以这样的方式工作,即视觉信息比文本信息更好地被识别和感知。这就是为什么所有营销人员和分析师使用不同的数据可视化技术和工具来使枯燥的表格数据更加生动。他们的目标是将原始的非结构化数据转换为结构化数据,并将其意义传达给参与决策过程的人员。
数据处理及可视化是Python的一大应用场景。不过为了实现更好的动态演示效果,实际应用中常常还需要和js相结合。
https://observablehq.com/@unkleho/covid-19-bubble-chart-with-d3-render
编译:黄念 席雄芬 校对:王婧 图片来源:bokeh.pydata.org ◆ ◆ ◆ 引言 最近,我一直在看美国德克萨斯州奥斯汀举办的SciPy 2015会议上的一段视频——“用Blaze和Bokeh创建Python数据应用程序”,并且情不自禁地反复思考这两个库赋予世界各地使用Python的数据科学家们的强大能力。在本文中,我将带你体验使用Bokeh实现数据可视化的各种可能途径,以及Bokeh为什么是每位数据科学家的必备“神器”。 ◆ ◆ ◆ 什么是Bokeh Bokeh是一个
在开源世界中,某些库为数据可视化提供了许多可能性,包括图形或网络表示。其他库仅专注于网络图表示。通常,这些库比通用库提供更多的功能。您还将找到商业图形可视化库。商业图书馆的优势在于可以保证持续的技术支持和先进的性能。
D3.js是一个JavaScript库。它的全称是Data-Driven Documents(数据驱动文档),并且它被称为一个互动和动态的数据可视化库网络。2011年2月首次发布,在撰写本文时,最新的稳定版本是4.4版本,并且不断更新。D3利用可缩放矢量图形或SVG格式,允许您渲染可放大或缩小的形状,线条和填充,而不会降低质量。本教程将指导您使用JavaScript D3库创建条形图。
注:本文有点长,可以点赞?收藏后慢慢看。另外有本文未涉及的、大家觉得不错的D3.js资源教程也欢迎评论进行分享。 前言 从「年更博主冒个泡,或将开启可视化之旅 - 牛衣古柳 - 2020.08.27」
在升级了DeveMobile 主题的时候Jeff 也顺便将主题主页进行了更新,访问主页你会看到首屏的Low-Poly 背景(每次刷新都不同),这个效果就是利用了d3.js 与Trianglify 制作
导读:数据可视化可以通过视觉形式来呈现抽象的数据信息,有利于对数据进行更深入的观察和分析,除了使用现有的可视化软件和工具,也可以用编程定制属于自己的数据可视化,本文推荐五个技巧教你用编程实现数据可视化
数据可视化之初级篇 零编程工具 1. Tableau Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。
数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。如果你仍然坚持使用Matplotlib(这太神奇了),Seaborn(这也很神奇),Pandas(基本,简单的可视化)和Bokeh,那么你真的需要停下来了解一下新事物了。例如,python中有许多令人惊叹的可视化库,而且通用化程度已经很高,例如下面这五个:
引言 最近,我一直在看美国德克萨斯州奥斯汀举办的SciPy 2015会议上的一段视频——“用Blaze和Bokeh创建Python数据应用程序”,并且情不自禁地反复思考这两个库赋予世界各地使用Python的数据科学家们的强大能力。在本文中,我将带你体验使用Bokeh实现数据可视化的各种可能途径,以及Bokeh为什么是每位数据科学家的必备“神器”。 什么是Bokeh? Bokeh是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别。正如下图所示,它说明了B
如果您了解并使用上面提到的库,那么您就处于进化的正确轨道上。它们可以帮助生成一些令人拍案的可视化效果,语法也不难。一般来说,我更喜欢Plotly+Cufflinks和 D3.js. 以下详细道来:
在上篇文章中(D3.js 力导向图的显示优化),我们说过 D3.js 在自定义图形上相较于其他开源可视化库的优势,以及如何对文档对象模型(DOM)进行灵活操作。既然 D3.js 辣么灵活,那是不是实现很多我们想做的事情呢?在本文中,我们将借助 D3.js 的灵活性这一优势,去新增一些 D3.js 本身并不支持但我们想要的一些常见的功能。
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。Tableau的客户包括巴克莱银行,Pandora和Citrix等企业
在现代Web开发中,数据可视化已成为展示复杂数据集的关键技术之一。D3.js(Data-Driven Documents)是一个强大的JavaScript库,用于创建动态、交互式的可视化图表。无论是简单的条形图还是复杂的地理热力图,D3.js都能提供灵活且深度的控制。本文旨在为初学者介绍D3.js的基础知识,探讨一些常见的问题及易错点,并提供解决方案和代码示例。
作为一个前端,说到可视化除了听过 D3.js 的大名,常见的可视化库还有 ECharts、Chart.js,这两个库功能也很强大,但是有一个共同特点是封装层次高,留给开发者可设计和控制的部分太少。和 EChart、Chart.js 等相比,D3.js** 的相对来说自由度会高很多,得益于 D3.js 中的 SVG 画图对事件处理器的支持**,D3.js 可将任意数据绑定到文档对象模型(DOM)上,也可以直接操作对象模型(DOM)完成 W3C DOM API 相关操作,对于想要展示自己设计图形的开发者,D3.js 绝对是一个不错的选择。
关于转载授权 大数据文摘作品,欢迎个人转发朋友圈,自媒体、媒体、机构转载务必申请授权,后台留言“机构名称+文章标题+转载”,申请过授权的不必再次申请,只要按约定转载即可,但文末需放置大数据文摘二维码。 大数据文摘愿意为读者打造高质量【可视化讨论群】,措施如下 (1)群内定期组织分享 (2)确保群内分享者和学习者数量适合(1:1),有分享能力者不限名额,学习者数量少于分享者,按申请顺序排序。 点击文末“阅读原文”填表入群 编译:黄念 席雄芬 校对:王婧 图片来源:bokeh.pyda
在 JS 程序中,为了实现漂亮的图形、图表和数据可视化,我们选择使用开源库。生活在数据爆炸的时代,我们开发的每一个应用程序几乎都使用或者借助数据来提升用户体验。为了帮助你轻松地为你最喜欢的应用程序添加漂亮的数据可视化,这里列出了 2019 年最好的 JavaScript 数据可视化库(排名不分先后)。
无论来自哪个行业,世界各地的企业都开始越来越多地意识到数据驱动型决策的重要意义。数据分析目前已经成为各行各业最为关注的议题之一,企业亦开始专注于从数据中获取有价值洞察结论,旨在借此了解过去与未来的各项
在之前的文章D3.js库-2-选择元素和绑定数据中,有介绍过D3.js中的两种选择数据的方法,本部分为重复内容,温故而知新:
翻译|王愫 黄文畅 校对| 杨天矇 特约专栏主编黄志敏老师推荐语: 我经常被问到一个问题:我没有技术底子,能学习数据可视化吗?我喜欢举一个例子来回答:许多到美国学新闻的女生,原本在国内是学语言或学新闻的,一点编程都不懂,到美国后短短一年,不仅跟上了学业,编程设计拍摄剪辑样样能上手。所以不在于你是什么基础,在于你有多大的动力和压力。这篇文章不仅提供了学习路径,还提出最实用的建议:现在就着手去做吧! ◆ ◆ ◆ 导 读 目前有很多用于数据可视化的软件和工具,都非常便捷实用。我很难回答像是“我应该学着用什么工
导语:今天我们带来一篇来自 Adobe 工程师 Rohit Boggarapu 的文章。他在文章中介绍了一些适合网页开发者的数据可视化和绘图工具,让你不必再花大力气与枯燥的数据抗争。部分工具不要求写代码也可以使用!
大家好,又见面了,我是你们的朋友全栈君。 D3.js + Canvas 绘制组织结构图 使用 D3.js 默认的 svg 渲染 D3默认的树状图画图使用的是svg 使用svg有好有坏: 好处是方便操作
ECharts 是一个基于 JavaScript 的开源可视化图表库,涵盖各行业图表,多达20多种图表和十几种组件,支持各种图表和组件的任意组合,满足各种需求,也是前端项目中大屏应用最多的。
上一篇文章「安利一些不错的D3.js资源 - 牛衣古柳 2021.06.29」的反响还不错,记得有新群友说是主管推给她文章才加过来的,也是很神奇。
领取专属 10元无门槛券
手把手带您无忧上云