在数据可视化中,地图是很重要的一部分。很多情况会与地图有关联,如中国各省的人口多少,GDP多少等,都可以和地图联系在一起。
现代社会早已进入读图时代,图像在一定上程度上取代了文字,占据了主导地位。对于数据分析来说,一张清晰的可视化图表确实比纷繁复杂的数字更清晰美观。随着科技的发展以及可视化需求的急剧增大,涌现了大批的数据可视化工具,通过对比分析市面上众多的数据可视化工具之后,我们挑选了几款给大家进行参考。
现如今大数据已人尽皆知,但在这个信息大爆炸的时代里,空有海量数据是无实际使用价值,更不要说帮助管理者进行业务决策。那么数据有什么价值呢?用什么样的手段才能把数据的价值直观而清晰的表达出来? 答案是要提供像人眼一样的直觉的、交互的和反应灵敏的可视化环境。数据可视化将技术与艺术完美结合,借助图形化的手段,清晰有效地传达与沟通信息,直观、形象地显示海量的数据和信息,并进行交互处理。 数据可视化的应用十分广泛,几乎可以应用于自然科学、工程技术、金融、通信和商业等各种领域。下面我们基于Python,简单地介绍一下适用于各个领域的几个实用的可视化库,快速带你入门!!
在数字经济时代,人们需要对大量的数字进行分析,帮助用户更直观的察觉差异,做出判断,减少时间成本。当然,你可能想象不到这种数据可视化的技术可以追溯到2500年前世界上的第一张地图,但是,如今利用各种形态
在 JS 程序中,为了实现漂亮的图形、图表和数据可视化,我们选择使用开源库。生活在数据爆炸的时代,我们开发的每一个应用程序几乎都使用或者借助数据来提升用户体验。为了帮助你轻松地为你最喜欢的应用程序添加漂亮的数据可视化,这里列出了 2019 年最好的 JavaScript 数据可视化库(排名不分先后)。
css选择器语法: http://www.w3school.com.cn/c***ef/css_selectors.asp
面作为地图渲染的基本元素之一,在地图中可以代表各种形式的区域,例如海面、绿地等。面数据通常以离散点串形式存储,因此渲染时最关注的是如何将其展现为闭合的图形。
上一篇教程介绍了绘制完整地图的方法:R 语言绘制十段线地图,给特定省份填色,今天我们将继续探索分省市地图的绘制。
最近我参与了几个数据大屏可视化项目,项目中要求在大屏上以地图的形式直观的展示某一地区的某个业务数据,在绘制地图时踩的坑还是挺多的,特此用一篇博客记录一下绘制地图的过程,下面会以展示江西省下面各城市手机品牌数为例介绍地图的绘制方法。
知识图谱(关系网络)可以用简单的形状和线条显示复杂的系统,帮助我们理解数据之间的联系。我们今天将介绍15个很好用的免费工具,可以帮助我们绘制网络图。
原项目是一个Web项目,采用传统的Servlet方式,后台主要完成的工作是计算节点的坐标,将节点的坐标封装成json格式由与前台进行交互。前期阶段,从前后台的数据传输方面尝试对代码进行理解,但是原始代码运行环境未知,现有的代码在运行时会有各种错误,未果,放弃。现在直接将后台的业务处理代码抽离进行抽离。目的是形成一个最简单的可执行的布局算法效果展示的SDK
这是《数据爬取及可视化系列》的第三篇文章。 前2篇文章,可以查阅: 01基于位置的用户画像初探 02技能之谷歌Chrome爬虫 ---- 最近在结合新学的爬虫在做一些可视化的东西了,今天讲讲可视化图
地图绘制也是数据可视化的一部分,常用的地图绘制库为basemap工具包,其为matplotlib的子包。本篇文章讲解如何利用whl文件在Python3环境下安装basemap;学会使用basemap绘制地图;学会缩放区域和绘制散点图;通过综合案例,巩固basemap的绘制地图方法和技巧。 涉及到的知识点有:
项目地址:https://gitee.com/jixuanfan/Map-of-China
没有3D建模的基础,对于制作3D场景要了解的知识也不明白,如何搭建3D可视化场景?咋整?什么都不会的我们该如何以最简单的方式搭建3D场景来完成我们的目标呢?当然,最简单的就是让别人帮我们做(Thing
matplotlib算是python比较底层的可视化库,可定制性强、图表资源丰富、简单易用、并且达到出版质量级别。
《天龙八部》是金庸老先生的一部经典古装武侠爱情小说,1997 年由香港无线电视台拍摄成同名影视剧,李添胜执导,黄日华、陈浩民、樊少皇、李若彤、联袂主演。该剧讲述的是面对乱世,萧(乔)峰、虚竹、段誉三人开始了非同寻常的江湖生涯,遇见了诸如天山童姥、慕容复、大轮明王、丁春秋、游坦之、四大恶人等各色高手,生死情仇、爱恨别离、民族大义在因缘际会中施展等故事。
networkD3是基于D3JS的R包交互式绘图工具,用于转换R语言生成的图为交互式网页嵌套图。目前支持网络图,桑基图,树枝图 (后续相继推出)等。 关于网络图的绘制,我们之前有5篇文章,可点击查看。 Cytoscape教程1 Cytoscape之操作界面介绍 新出炉的Cytoscape视频教程 Cytoscape: MCODE增强包的网络模块化分析 一文学会网络分析——Co-occurrence网络图在R中的实现 也可以使用此文介绍的network3D绘制交互式网络图,输入数据与Cytoscape需要的数
随着互联网的快速发展,数据维度越来越广,呈现形式也越发丰富,具有多维度数据特点的相关业务实践都能通过可视化图表来展示,比如个推的下发图,从时间和区域两个维度,可以即时、直观地展现个推数据下发的过程。
今天来讲一讲在日常工作生活中我常用的几种绘制地图的方法,下面我将介绍下面这些可视化库的地图绘制方法,当然绘制漂亮的可视化地图还有很多优秀的类库,没有办法一一列举
你有我有全都有: 拥有头部AI能力和资源的服务商在相对成熟场景的单点技术能力日趋同质化
地图中的option参数根据自己业务场景的需要进行配置的哦,最后将参数setOption进去就可以显示了哦
1)安装常用的python爬虫工具:beautifulsoup4、requests
库简介:D3Blocks是一个基于d3 javascript (d3js)的图形库,通过只需少量的Python代码就能创建出视觉上吸引人且实用的图表!
翻译:陈妍君 吴怡雯 校对:田晋阳 图表是一种美观而强大的工具,可以帮助我们探索和诠释这个世界。数百年来,人们一直在使用图表来解释跟数据相关的种种。为了向数据可视化的历史和图表的力量致敬,我们重新制作了史上最具代表性的7张图表。 这其中一部分是用现代的方法呈现出原稿,而另一些则致力于对原图的重新制作。这项工程由Edward Tufte发起。他是一位数据可视化的专家,已经对这些以及更多的图表写过相关文章。 ◆ ◆ ◆ 1. 俄法战争 1969年,Charles Minard做了一张图表,是1812年拿破仑
该数据是Canvas绘制地图的关键,可以使用json 或者 js 形式进行导入,小程序中使用js 更为方便。
不知道各位平常有没有过需要画地图的需求,有的时候需要在地图上标出特定位置的数据表现或者一些数值,然而怎么实现? 这里主要介绍下在R语言中绘制地图的个人琢磨的思路。绘制地图步骤有三: 你得需要绘制地图;(约等于废话) 你得有要绘制地图的地理信息,经纬度啊,边界啊等等; 你得利用2的数据在R中画出来。 以上步骤中,目前最关键的是2,一旦2的数据有了,在R中不就是把它们连起来嘛,这个对于R来说就是调戏它,就跟全民调戏小黄鸡一样。 R语言中绘制地图的思路也是由于2的获取方式不一样而分开的。 第一种思路:有一些R包
地图可以看成是一个巨型的开放世界游戏场景,因此为了便于数据存储和查找,传统的做法是将地球根据墨卡托投影转换为平面地图,再将地图分级分块进行切片,通过索引获取到对应的数据。
“坦克大战”作为一款经典的街机游戏,其简单而激烈的玩法吸引了无数玩家。而现在,我们通过Web技术,可以把这一记忆中的经典游戏带到浏览器里。
本文介绍了如何利用R语言中的maps包和mapdata包绘制地图,并通过热力地图展示数据分布情况。首先,通过map()函数创建地图对象,并获取每个区域的名字以及顺序。然后,在每个区域的名字和顺序后面,加上需要展示的数据以及经纬度。接着,根据数据的大小设置每个区域的颜色深浅,以区分不同的区域。最后,给地图加上地名标记,并添加热力地图元素。
数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像, 同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。 图表库 C3 – 以 d3 为基础构建的可重用图表库 Chart.js – 带有 canvas 标签的图表 Chartist.js – 具有强大浏览器兼容能力的响应式图表 Dimple – 适用于业务分析的面向对象的 API Dygraphs – 适用于大型数据集的交互式线性图表库 Echarts – 针对
建国70周年大庆即将到来,各行各业都在积极筹备迎接祖国的生日,在这个举国欢腾的时刻,我们决定以一种特殊方式来表达自己对祖国母亲的祝福:一副用R语言绘制的中国地图。
ggmap包整合了四种地图资源,分别是Google、OpenStreetMaps、Stamen和Cloudmade。可以方便的与ggplot进行涂层叠加,实现在R中的地图绘制需求。 ggmap简介 1,get_map( ):ggmap包中最基本函数,用来下载地图。注意,要访问外国网站后才能下载地图。 2,geocode( ):用来返回某地的经纬度,比如要查询北京的经纬度。 结果为在谷歌地图上,北京的经纬度查询信息。设置参数,可以得到更详细的地址信息。 3,ggmap( ):
虽然本周 GitHub 热榜都是一些熟悉的面孔,但还是有不少新开源的项目,比如受启发于 Stripe IDs 的 UUIDv7 扩展 typeid,相信有了它,数据标识问题就迎刃而解了。此外,还有刚开源就获得近 2k star 的抠背景项目 background-removal-js,一键就能去掉图片背景。
项目名称:制作一款窗口程序的飞行棋项目 项目需求:要求至少两人对战 开发周期:两天
大数据文摘作品,转载具体要求见文末 编译团队 | 寒小阳 黄念 黄卓君 作者|Megan Risdal 目前,Kaggle用户在我们的开放数据科学平台上创建了近3万颗内核。这代表了惊人且不断增长的可再现知识。我发现我们的代码和数据库是目前了解Python和R最新技术和库的好地方。 在这篇博客中,我将一些优秀的用户内核变成迷你教程,作为在Kaggle上发布的数据集进行绘制地图的开始。这篇文章中,你将学习如何用Python和R,使用包括实际代码示例的几种方法来布局和可视化地理空间数据。我还列出了资源,以便你可
最近的一段时间,一直在研究绘制地图的相关知识,也在网上查找了很多资料,在这个过程中,无意中发现了两个超级惊艳的网站,下面就介绍给大家~
Python的绘图功能非常强大,在大气和海洋常常用来绘制一些有关地理方面的图。本片主要介绍python绘制EC数据(grib格式)的的全国降水分布图。
地图白化是一种绘制地图的技术,它可以实现对感兴趣区域以外的数据进行遮盖或填充白色的效果,从而突出显示目标区域的特征。 地图白化的原理是利用 shapefile 文件中的多边形坐标来创建一个剪切路径,然后将这个路径应用到 matplotlib 的绘图对象上,使得只有路径内的数据可见,路径外的数据被隐藏或覆盖。 气象家园的另一个五星上将clarmy在龙场悟道后开发了cnmaps库,解决广大地学学子绘制地图的痛点
近年来,可视化越来越流行,许多报刊杂志、门户网站、新闻媒体都大量使用可视化技术,使得复杂的数据和文字变得十分容易理解,有一句谚语“一张图片价值于一千个字”。D3 正是数据可视化工具中的佼佼者,基于 JavaScript 开发,项目托管于 GitHub。从 D3诞生以来,不断受到好评,在 GitHub 上的项目仓库排行榜也不断上升。可视化越来越流行,许多报刊杂志、门户网站、新闻、媒体都大量使用可视化技术,使得复杂的数据和文字变得十分容易理解,有一句谚语“一张图片价值于一千个字”,的确是名副其实。各种数据可视化工具也如井喷式地发展,D3 正是其中的佼佼者。D3 的全称是(Data-Driven Documents),顾名思义可以知道是一个被数据驱动的文档。听名字有点抽象,说简单一点,其实就是一个 JavaScript 的函数库,主要是用来做数据可视化。
公众号后台回复关键词:plotly,获取本文jupyter notebook 源代码~
最近在网络上看到了很多地图下钻的文章,感觉都很不错,正好自己也在研究这部分知识,就想着把下钻这个功能结合到疫情大屏中来,这样就能够更好的展示不同省份的疫情信息了。废话不多说,直接来干货!
这段时间我会把蓝桥杯官网上的所有非VIP题目都发布一遍,让大家方便去搜索,所有题目都会有几种语言的写法,帮助大家提供一个思路,当然,思路只是思路,千万别只看着答案就认为会了啊,这个方法基本上很难让你成长,成长是在思考的过程中找寻到自己的那个解题思路,并且首先肯定要依靠于题海战术来让自己的解题思维进行一定量的训练,如果没有这个量变到质变的过程你会发现对于相对需要思考的题目你解决的速度就会非常慢,这个思维过程甚至没有纸笔的绘制你根本无法在大脑中勾勒出来,所以我们前期学习的时候是学习别人的思路通过自己的方式转换思维变成自己的模式,说着听绕口,但是就是靠量来堆叠思维方式,刷题方案自主定义的话肯定就是从非常简单的开始,稍微对数据结构有一定的理解,暴力、二分法等等,一步步的成长,数据结构很多,一般也就几种啊,线性表、树、图、再就是其它了。顺序表与链表也就是线性表,当然栈,队列还有串都是属于线性表的,这个我就不在这里一一细分了,相对来说都要慢慢来一个个搞定的。蓝桥杯中对于大专来说相对是比较友好的,例如三分枚举、离散化,图,复杂数据结构还有统计都是不考的,我们找简单题刷个一两百,然后再进行中等题目的训练,当我们掌握深度搜索与广度搜索后再往动态规划上靠一靠,慢慢的就会掌握各种规律,有了规律就能大胆的长一些难度比较高的题目了,再次说明,刷题一定要循序渐进,千万别想着直接就能解决难题,那只是对自己进行劝退处理。加油,平常心,一步步前进。
nuxt.js 下使用 antv-l7 实在是有太多的坑了,官方文档也不是很全,只能不断摸索和尝试,下面我把这些坑记录下来,也许能帮到你。
投稿作者|巫银良 大数据文摘欢迎各类优质稿件 请联系tougao@bigdatadigest.cn 移动互联网应用和大规模社交网络催生了海量的数据分析需求,时空数据作为记录用户和设备在现实世界分布和活跃程度的基础数据,一直为各大互联网电子商务平台和商家所关注。地理空间数据结合其他业务数据如何被分析利用,以及如何在分析中可视化呈现一直是现代化分析平台的一个重要方向。一方面各种地图服务越来越多地集成到应用中,成为应用增强交互的组成部分(比如“附近的服务/人”,甚至连支付包红包都需要呈现各种方位关系,来增强乐趣)
【注】新版本的maptools包对很多函数进行了修改,对于修改的内容,文章中用红色的文字进行了说明。 鉴于最近有不少人在讨论用R软件绘制地图的问题,我也就跟着凑了凑热闹,对相应的方法学习了一番。下面的这篇文章是一个初步的介绍,还有很多内容仍在学习和探索中,如果大家有什么意见或建议,我将根据自己学习的情况对文章进行进一步的补充。 在R中绘制地图其实是十分方便的,最直接的办法大概就是安装maps和mapdata这两个包,然后输入下面的命令: library(maps) library(mapdata) ma
数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。如果你仍然坚持使用Matplotlib(这太神奇了),Seaborn(这也很神奇),Pandas(基本,简单的可视化)和Bokeh,那么你真的需要停下来了解一下新事物了。例如,python中有许多令人惊叹的可视化库,而且通用化程度已经很高,例如下面这五个:
如果您了解并使用上面提到的库,那么您就处于进化的正确轨道上。它们可以帮助生成一些令人拍案的可视化效果,语法也不难。一般来说,我更喜欢Plotly+Cufflinks和 D3.js. 以下详细道来:
领取专属 10元无门槛券
手把手带您无忧上云