CLASS_NAMES)
# Initialize images, labels, weights matrices
images = np.zeros((num_images, 256..., 256, 3), dtype='float32')
labels = np.zeros((num_images, num_classes), dtype='int')
weights...= np.zeros((num_images, num_classes), dtype='int')
# First load all the images for given split...)
dataset = dataset.batch(20).repeat(200)
return dataset
if __name__ == '__main__':
# Logging...labels = tf.random_shuffle(labels, seed=0)
data = tf.data.Dataset.from_tensor_slices((images, labels