首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    大数据技术之_32_大数据面试题_01_Hive 基本面试 + Hive 数据分析面试 + Flume + Kafka 面试

    一、Hive 基本面试1、什么是 metastore2、metastore 安装方式有什么区别3、什么是 Managed Table 跟 External Table?4、什么时候使用 Managed Table 跟 External Table?5、hive 有哪些复合数据类型?6、hive 分区有什么好处?7、hive 分区跟分桶的区别8、hive 如何动态分区9、map join 优化手段10、如何创建 bucket 表?11、hive 有哪些 file formats12、hive 最优的 file formats 是什么?13、hive 传参14、order by 和 sort by 的区别15、hive 跟 hbase 的区别二、Hive 数据分析面试1、分组 TopN,选出今年每个学校、每个年级、分数前三的科目2、今年,北航,每个班级,每科的分数,及分数上下浮动 2 分的总和3、where 与 having:今年,清华 1 年级,总成绩大于 200 分的学生以及学生数三、Flume + Kafka 面试1、flume 如何保证数据的可靠性?2、kafka 数据丢失问题,及如何保证?3、kafka 工作流程原理4、kafka 保证消息顺序5、zero copy 原理及如何使用?6、spark Join 常见分类以及基本实现机制

    03

    【 airflow 实战系列】 基于 python 的调度和监控工作流的平台

    本文介绍了 Airflow 这款开源的 DAG 流程编排框架,从架构、原理、优点、使用场景、实现细节、扩展、ETL、数据依赖、资源依赖、任务依赖、安全、Hook、日志、任务定义、执行、调度、监控、运维、社区、文档等方面进行了详细的介绍。Airflow 旨在解决 Celery 和 Kubernetes 等工具无法解决的问题,通过实践证明了 DAG 流程编排的价值。Airflow 的架构设计巧妙,实现了分布式、高可用的 DAG 执行引擎。Airflow 使用 Python 实现,支持多种 DAG 定义格式,可与主流的分布式数据存储系统无缝集成。Airflow 还支持云原生技术,可以轻松地在 Kubernetes 上运行。通过本文的讲解,读者可以了解到 Airflow 的设计理念、架构、使用方式和实现细节,掌握如何在分布式环境下实现 DAG 流程编排。同时,本文还提供了实际案例,帮助读者更好地理解 Airflow 的使用方式。

    00
    领券