选自Keras Blog 作者:Francois Chollet 机器之心编译 参与:黄小天、路雪 如何在 Keras 中实现 RNN 序列到序列学习?本文中,作者将尝试对这一问题做出简短解答;本文预设你已有一些循环网络和 Keras 的使用经验。 GitHub:https://github.com/fchollet/keras/blob/master/examples/lstm_seq2seq.py 什么是序列到序列学习? 序列到序列学习(Seq2Seq)是指训练模型从而把一个域的序列(比如英语语句)转化
作者 | Francois Chollet 编译 | 雁惊寒 seq2seq是一种把序列从一个域(例如英语中的句子)转换为另一个域中的序列(例如把相同的句子翻译成法语)的模型训练方法。目前有多种方法可以用来处理这个任务,可以使用RNN,也可以使用一维卷积网络。 很多人问这个问题:如何在Keras中实现RNN序列到序列(seq2seq)学习?本文将对此做一个简单的介绍。 什么是seq2seq学习 序列到序列学习(seq2seq)是一种把序列从一个域(例如英语中的句子)转换为另一个域中的序列(例如把相同的句子
第一步,引入需要的包: from keras.models import Model from keras.layers import Input, LSTM, Dense import numpy as np import pandas as pd 第二步,定义模型超参数、迭代次数、语料路径: #Batch size 的大小 batch_size = 32 # 迭代次数epochs epochs = 100 # 编码空间的维度Latent dimensionality latent_di
string_decoder模块用于将Buffer转成对应的字符串。使用者通过调用stringDecoder.write(buffer),可以获得buffer对应的字符串。
中文词表:[机、器、学、习] 英文词表[deep、machine、learning、chinese]
序列到序列(Seq2Seq)模型是一种深度学习模型,广泛应用于机器翻译、文本生成和对话系统等自然语言处理任务。它的核心思想是将一个序列(如一句话)映射到另一个序列。本文将详细介绍 Seq2Seq 模型的原理,并使用 Python 和 TensorFlow/Keras 实现一个简单的 Seq2Seq 模型。
本文代码的github连接:https://github.com/princewen/tensorflow_practice/tree/master/chat_bot_seq2seq_attention 1、attention model原理介绍 1.1 attention model 为什么要有attention机制 原本的Seq2seq模型只有一个encoder和一个decoder,通常的做法是将一个输入的句子编码成一个固定大小的state,然后作为decoder的初始状态(当然也可以作为每一时刻的输入
神经网络。《Make Your Own Neural Network》,用非常通俗易懂描述讲解人工神经网络原理用代码实现,试验效果非常好。
如果你在用 Go 语言编程,并且使用 json.Decoder 反解 JSON 负载,你可能会产生非预期效果。你应该使用 json.Unmarshal 代替 json.Decoder.
作为一个程序员,我们可以像学习编程一样学习深度学习模型开发。我们以 Keras 为例来说明。我们可以用 5 步 + 4 种基本元素 + 9 种基本层结构,这 5-4-9 模型来总结。
seq2seq还是很赞的,既能做翻译、又能做image captioning,还能做多标签。
初始状态 + embedding 作为输入,经过LSTM,输出 decoder_outputs_inf, state_h_inf, state_c_inf
Seq2Seq全称Sequence to Sequence,在机器翻译、文章摘要等领域有着广泛的应用。其本身很简单,是一个如下图所示的Encoder-Decoder框架。 本文不纠结于Seq2Seq的
作为一个程序员,我们可以像学习编程一样学习深度学习模型开发。我们以 Keras 为例来说明。
大年初一我居然在更博客。今年过年由于病毒横行,没有串门没有聚餐,整个人闲的没事干。。。医生真是不容易,忙得团团转还有生命危险,新希望他们平安。
今天我们进入 Seq2Seq 的领域,了解这种更为复杂且功能强大的模型,它不仅能理解词汇(Word2Vec),还能把这些词汇串联成完整的句子。
简单来算,它就是两个decoder,一个是decoder_backward,一个是decoder_forward,它们初始化输入值都是选择的profile值,如“钢琴”。decoder_backward生成“钢琴”前面的词语,decoder_forward生成“钢琴”后面的词语。
知乎专栏:机器不学习 作者:天雨栗 | 蚂蚁金服 | 数据算法 已授权刊登 前言 好久没有更新专栏,今天我们来看一个简单的Seq2Seq实现,我们将使用TensorFlow来实现一个基础版本的Seq2Seq,主要帮助理解Seq2Seq中的基础架构。 最基础的Seq2Seq模型包含了三个部分,即Encoder、Decoder以及连接两者的中间状态向量,Encoder通过学习输入,将其编码成一个固定大小的状态向量S,继而将S传给Decoder,Decoder再通过对状态向量S的学习来进行输出。 图中每一
前言 好久没有更新专栏,今天我们来看一个简单的Seq2Seq实现,我们将使用TensorFlow来实现一个基础版本的Seq2Seq,主要帮助理解Seq2Seq中的基础架构。 最基础的Seq2Seq模型
Encoder-Decoder 模型主要是 NLP 领域里的概念。它并不特值某种具体的算法,而是一类算法的统称。Encoder-Decoder 算是一个通用的框架,在这个框架下可以使用不同的算法来解决不同的任务。
DeBERTa刷新了GLUE的榜首,本文解读一下DeBERTa在BERT上有哪些改造
有工程师询问vcu-ctrl-sw里decoder的退出机制。 下面的内容,根据vcu-ctrl-sw 2020.2分析。
Encoder-decoder 模型在序列到序列的自然语言处理任务(如语言翻译等)中提供了最先进的结果。多步时间序列预测也可以被视为一个 seq2seq 任务,可以使用 encoder-decoder 模型来处理。本文提供了一个用于解决 Kaggle 时间序列预测任务的 encoder-decoder 模型,并介绍了获得前 10% 结果所涉及的步骤。
实战是学习一门技术最好的方式,也是深入了解一门技术唯一的方式。因此,NLP专栏计划推出一个实战专栏,让有兴趣的同学在看文章之余也可以自动动手试一试。
作者简介:刘子瑛,阿里巴巴操作系统框架专家;CSDN 博客专家。工作十余年,一直对数学与人工智能算法相关、新编程语言、新开发方法等相关领域保持浓厚的兴趣。乐于通过技术分享促进新技术进步。 作为一个程序员,我们可以像学习编程一样学习深度学习模型开发。我们以 Keras 为例来说明。 我们可以用 5 步 + 4 种基本元素 + 9 种基本层结构,这 5-4-9 模型来总结。 5步法: 1. 构造网络模型 2. 编译模型 3. 训练模型 4. 评估模型 5. 使用模型进行预测 4种基本元素:
BART和MASS都是2019年发布的,面向生成任务,基于Transformer神经翻译结构的序列到序列模型。分别由Facebook 和微软亚洲研究院提出。他们都对encoder输入的屏蔽(mask)方式进行了改进,并且在生成任务的效果也都比之前有了不少提升。让我们花10分钟来一起来看看这两个模型吧。 两个模型都是以Transformer的神经翻译模型作为基础结构,而Transformer的encoder-decoder结构(图 1)的具体讲解可以参考上一篇文章。
在上一篇文章中我们介绍了Attention层和Self-Attention层,计算逻辑大同小异。只不过之前介绍的都只是Single-Head Self-Attention Layer,如下图示。
作者 | 李理 环信人工智能研发中心 VP,十多年自然语言处理和人工智能研发经验。主持研发过多款智能硬件的问答和对话系统,负责环信中文语义分析开放平台和环信智能机器人的设计与研发。 (在阅读本文之前,建议你先阅读该系列的前两篇文章,附完整代码:①一文详解循环神经网络的基本概念,②实战 | 手把手教你用PyTorch实现图像描述) 本示例会介绍使用 seq2seq 网络来实现机器翻译,同时使用注意力机制来提高seq2seq的效果(尤其是长句)。 图5.24: seq2seq 模型 ▌sequence to s
本文是seq2seq模型的第二篇,主要是通过raw_rnn来实现seq2seq模型。 github地址是:https://github.com/zhuanxuhit/nd101 原文地址:https://github.com/ematvey/tensorflow-seq2seq-tutorials/blob/master/2-seq2seq-advanced.ipynb
另外,点击阅读原文尝试微软的自动对联系统(http://duilian.msra.cn/app/couplet.aspx)
本文结构: 什么是 seq2seq? Encoder–Decoder 结构? seq2seq 结构? ---- 什么是 seq2seq? seq2seq 是一个 Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是一个序列, Encoder 中将一个可变长度的信号序列变为固定长度的向量表达,Decoder 将这个固定长度的向量变成可变长度的目标的信号序列。 这个结构最重要的地方在于输入序列和输出序列的长度是可变的,可以用于翻译,聊天机器人,句法分析,文本摘要等。 下面是写过的 seq2s
前一篇文章详细讲解了循环神经网络LSTM RNN如何实现回归预测,通过sin曲线拟合实现如下图所示效果。本篇文章将分享无监督学习Autoencoder的原理知识,然后用MNIST手写数字案例进行对比实验及聚类分析,运行效果如下图所示。基础性文章,希望对您有所帮助!
《乘风破浪的PTM》系列,讲述两年来预训练模型(Pre-Training Model, PTM)的技术进展,本篇主要整理预训练模型中的发动机:模型结构。错过前文的小伙伴可以通过?以下链接直接阅读哦~
我们在做Windows平台Unity播放RTMP或RTSP的时候,遇到这样的问题,比如展会、安防监控等场景下,需要同时播放多路RTMP或RTSP流,这样对设备性能,提出来更高的要求。
软件开发中遇到需要播放音频文件时,可以使用操作系统提供的API也可以依赖于第三方库,通常第三方库多因其简单易用的接口而成为首选。miniaudio便是游戏的音频开源库之一。
在前文《视频编解码硬件方案漫谈》中我们介绍硬件视频编解码的一般方案,本文我们进一步介绍音视频编解码如何在ffmpeg使用显卡硬件进行加速。
在上个文章中,我们已经简单介绍了 NLP 机器翻译,这次我们将用实战的方式讲解基于 RNN 的翻译模型。
从本节开始,我们介绍一种人工智能实现无缝变脸的网络名为可变自动编解码器,英文名称:variational autoencoder。在前面章节中我们曾介绍过,很多事物看起来似乎很复杂,但只要抓住其关键变量,那就等同于抓住事物的本质,例如一个圆柱体,它的关键变量就是底部圆的半径,和高度,掌握了这两个变量的信息,我们可以轻易的将圆柱构造出来。
在上个文章中,我们已经简单介绍了NLP机器翻译,这次我们将用实战的方式讲解基于RNN的翻译模型。
假设我们需要把英语翻译成德语,那么我们首先要做的是对不同语种做tokenization(分词)。常用的分词做法是以“词”为单位,这里为方便介绍,就以字符为单位:
本文介绍了概率模型,包括Probabilistic decoder、Bayesian neural network和Probabilistic encoder。Probabilistic decoder是一种概率图模型,利用编码理论对likelihood进行重新解释。Bayesian neural network是一种概率模型,具有先验分布的神经网络。Probabilistic encoder则是一种变分推断模型,利用神经网络输出作为分布的参数。
该文介绍了基于注意力机制的深度学习模型在自然语言处理领域的应用,并提供了相关代码和示例。
Base64是一种能将任意Binary资料用64种字元组合成字串的方法,而这个Binary资料和字串资料彼此之间是可以互相转换的,十分方便。在实际应用上,Base64除了能将Binary资料可视化之外,也常用来表示字串加密过后的内容。如果要使用Java 程式语言来实作Base64的编码与解码功能,可以参考本篇文章的作法。
最近谷歌提出了最新多模态预训练方法CoCa,在图像分类、图文检索、看图说话、VQA等多个任务都取得了SOTA效果。CoCa可以说融合了历史图像模型、多模态模型训练范式为一体,融合了多种训练范式的优点,具有非常广泛的适用场景。同时,模型的核心结构和设计思路也比较优雅简洁。下面带大家了解一下这篇谷歌最新多模态工作。
在学习深度学习的过程中,我们通常会学到这样一对单词“Encoder”和“Decoder”。其实只要你学习深度学习,“Encoder”和“Decoder”就一定会接触到,并非只是Pytorch所独有。
领取专属 10元无门槛券
手把手带您无忧上云