首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度学习预测分子系统的平衡分布

    今天为大家介绍的是来自微软研究团队的一篇关于分子构象的论文。深度学习的进步极大地改善了分子的结构预测。然而,对于真实世界的应用而言,许多重要的宏观观察并不是单一分子结构的函数,而是由结构的平衡分布确定的。传统的获取这些分布的方法,如分子动力学模拟,计算代价高昂且常常难以处理。在本文中,作者引入了一种新颖的深度学习框架,称为分布图变换器(DiG),旨在预测分子系统的平衡分布。通过展示DiG在几个分子任务上的性能,包括蛋白质构象采样、配体结构采样、催化剂吸附采样和基于性质的结构生成,DiG在统计理解分子系统的方法学方面具有重大进展,为分子科学开辟了新的研究机会。

    04
    领券