首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

SVM系列(二):方法概述---正定以及技巧

2.正定 我们所说的函数大部分都是正定。在下面的探讨中,输入空间为 , 。...2.1定义 正定的定义有两种: •对于 ,若存在一个函数 ,使得 ,则称 为正定函数•对于 ,如果 满足对称性以及正定性,则我们也称 为正定函数 对第一条定义的说明:我们要将低维样本映射到高维...,则我们需要一个映射函数,如果我们能够找到一个 函数,使得我们定义的 恰好是两个高维样本 的内积,则 就是一个正定函数。...而在定义二中,我们只需要自己定义一个函数K,然后取任意N个样本,联合K求它们的Gram矩阵,只要该矩阵满足半正定性质,那么我们定义的函数K就是一个正定函数。 3.技巧  什么是技巧?...4.常见的函数 伟大的前人已经帮我们定义好了很多的函数,常见的有:

1.3K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    线性回归,技巧和线性

    然后我将解释什么是函数和线性函数,最后我们将给出上面表述的数学证明。...以下是一个函数示例: kernel从m维空间创建m^2维空间的第一个例子是使用以下代码: 在函数中添加一个常数会增加维数,其中包含缩放输入特征的新特征: 下面我们要用到的另一个函数是线性函数:...所以恒等变换等价于用一个函数来计算原始空间的内积。...实际上还有很多其他有用的,比如径向(RBF)或更一般的多项式,它们可以创建高维和非线性特征空间。...这就是函数的诀窍:当计算解'时,注意到X '与其转置的乘积出现了,它实际上是所有点积的矩阵,它被称为矩阵 线性化和线性回归 最后,让我们看看这个陈述:在线性回归中使用线性是无用的,因为它等同于标准线性回归

    25330

    方法

    令 为函数 对应的再生希尔伯特空间, 表示 空间中的h函数,对于任意单调递增函数 和任意非负损失函数 ,优化问题...表示定理对损失函数没有限制,对正则化项 仅要求单调递增,甚至不要求 是凸函数,意味着对于一般的损失函数和正则化项,优化问题的最优解 都可表示为函数 的线性组合;这显示出函数的巨大威力...人们发展出一系列基于函数的学习方法,统称为“方法”(kernel method)。最常见的,是通过“化”(即引入函数)来将线性学习器拓展为非线性学习器。...下面我们以线性判别分析为例来演示如何通过化来对其进行非线性拓展,从而得到“线性判别分析”(Kernelized Linear Discriminant Analysis,简称KLDA)。...把 作为(6.57)中的损失函数l,再令 ,由表示定理,函数h(x)可写为 于是由式(6.59)可得 令 为函数 所对应的矩阵, ,令 为第 类样本的指示向量,即

    1.4K10

    A与M异构通信过程解析

    一、 硬件层通信实现原理 二、驱动层Virtio下RPMsg通信实现 三、应用层双通信实现方式 现在越来越多的产品具有M core和A core的异构架构,既能达到M的实时要求,又能满足A的生态和算力...TXVring区发送数据,从RXVring区读取接收数据,A反之。...处理器支持消息传递单元(MessagingUnit,简称MU)功能模块,通过MU传递消息进行通信和协调,M和A之间通过寄存器中断的方式传递命令,最多支持4组MU双向传递消息,既可通过中断告知对方数据传递的状态...RPMsg消息框架是Linux系统基于Virtio缓存队列实现的主处理和协处理间进行消息通信的框架,当客户端驱动需要发送消息时,RPMsg会把消息封装成Virtio缓存并添加到缓存队列中以完成消息的发送...在驱动层,对A,Linux采用RPMsg框架+Virtio驱动模型,将RPMsg封装为了tty文件供应用层调用;在M,将Virtio移植,并使用简化版的RPMsg,因为涉及到互斥锁和信号量,最终使用

    64040

    污水与废水的区别是什么?

    8月24日,日本政府不顾国际社会反对,一意孤行地将福岛污水排放到大海。 污水与废水的区别 日本政府就在国际上玩文字游戏,要把他们排放的污水,称为“废水”。...污水,就是直接被“融化的反应堆”污染过的水,由于受到沾染而具有高度放射性。...排放污水的影响 将污水排入海洋,海洋里的生物会吸收排放的污水,污水中的放射性物质会不断被海洋生物摄入,在海洋生物体内造成积累,人类再去吃这些海洋生物,污染物就会进入人类体内,且难以清除。...福岛污水从排放之日起,57天内放射性物质就将扩散至太平洋大半区域,3年后美国和加拿大就将遭到核污染影响,10年后蔓延全球海域。...按照日本的说法,他们已经使用ALPS对污水进行了无害化处理,经过处理后的污水中,除了氚之外的绝大部分放射性元素都可以清除,氚浓度也将稀释到日本国家标准的1/40。

    31410

    性能基础之CPU、物理、逻辑概念与关系

    基础概念 CPU( CentralProcessingUnit): 中央处理单元,CPU不等于物理,更不等于逻辑。...逻辑( logical core/processor,LCPU): 在同一个物理内,逻辑层面的。...逻辑也一样,物理通过高速运算,让应用程序以为有两个cpu在运算)。...高速在这两个逻辑之间切换,让应用程序感知不到这个间隔,误认为自己是独占了一个。 关系: 一个CPU可以有多个物理。如果开启了超线程,一个物理核可以分成n个逻辑,n为超线程的数量。...当然,拥有2个双处理器仍然比单核处理器更好,但更好的是拥有一个四处理器。 在操作系统级别,物理四处理器将显示为4 cpu计算机。但这些将是4个逻辑CPU或非物理LCPU。

    16.9K84

    工商注册名查询系统 查询系统名流程

    但是名字并不是自己想取什么样的就可以通过审核,需要通过工商注册名查询系统的审核。工作人员会在规定的工作日内,完成名字的审核,如果不合格的话,还会给大家返回来重新改名字。...工商注册名查询系统是做什么的 查询名字是否有重复,名字是否过审。所有的企业在取名以后,都会进行的一个步骤是登记在册。也就是说这些名字都会录入系统当中。后面再有公司想要注册新的名字的话,需要做查重。...因为现在对于企业名称这一方面的审核非常严格,工商注册名查询系统会帮助大家看一下名字当中是否有违禁词,如果有违禁词,企业需要重新更改再提交,直到审核通过为止。...查询系统名流程 大家可以先登录官网,登录以后会有注册的界面,按照界步骤地提示提示挨个进行填写。在填写的过程中要注意的是,自己的公司信息需要是准确无误的。...如果有信息填写错误,系统捕捉不到公司的信息,没有办法进行名。填完信息以后,系统将会给出一个建议,建议当中包括了审核通过率为高,中或者是低。大家可以根据建议,进行更改。

    3.3K20

    支持向量机技巧:10个常用的函数总结

    SVM的方法 方法(也称为内核函数)是用于模式分析的不同类型算法的集合。它们可以使用线性分类器来解决非线性问题。...常用函数 1、线性 Linear Kernel 它是最基本类型,本质上通常是一维的。当有很多特征时,它被证明是最好的函数。...一维线性样条公式 Sklearn中的函数 到目前为止,我们已经讨论了关于函数的理论信息。...线性 使用线性来创建svc分类器。...如果你的数据是线性可分的,不用多想,就用线性。 因为与其他函数相比,线性函数需要更少的训练时间。 线性在文本分类问题中最受青睐,因为它对大型数据集表现良好。

    1.3K30

    CPU明明8个,网卡为啥拼命折腾一号

    “就是有些线程想绑定在你们之中的某一个上面执行,不希望一会儿在这个执行,一会儿在那个执行” 我接过他的话:“好像是有这么回事儿,之前有遇到过,有个线程一直被分配到我们一号车间,不过我们对这个不用关心吧...你们每个的一二级缓存都是自己在管理,要是换到别的,这缓存多半就没用了,又得重新来建立,这换来换去的岂不是瞎耽误功夫嘛!...APIC默认有一套分发策略,但是也提供亲和性的设置,可以指定谁哪些来处理,这样不用把规矩定死,灵活可变,岂不更好?” 刚说完,会议室门口突然出现一年轻少年,挥手将操作系统代表唤了出去。...接下来,我们详细讨论了这种方案的可行性,最后大家一致决定,就照这么办,我们一起提出了一个叫中断亲和性的东西,操作系统那边提供一个可配置的入口smp_affinity,可以通过设置各处理器的掩码来决定中断交由谁来处理

    1.2K20

    SVM 的“”武器

    函数表示特征空间的隐式映射:在上文中,我们已经了解到了SVM处理线性可分求解的情况,而对于非线性的情况,SVM 的处理方法是选择一个函数 κ(⋅,⋅) ,通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题...由于函数的优良品质,这样的非线性扩展在计算量上并没有比原来复杂多少,这一点是非常难得的。...当然,这要归功于方法——除了 SVM 之外,任何将计算表示为数据点的内积的方法,都可以使用方法进行非线性扩展。...,而不增加可调参数的个数(当然,前提是函数能够计算对应着两个输入特征向量的内积)。...关于拉格朗日乘子参数在函数方法中的求解,其实是与之前是一致的,因为函数能简化映射空间中的内积运算——刚好“碰巧”的是,在我们的 SVM 里需要计算的地方数据向量总是以内积的形式出现的。

    1.4K100

    SVM 的“”武器

    函数表示特征空间的隐式映射:在上文中,我们已经了解到了SVM处理线性可分求解的情况,而对于非线性的情况,SVM 的处理方法是选择一个函数 κ(⋅,⋅) ,通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题...由于函数的优良品质,这样的非线性扩展在计算量上并没有比原来复杂多少,这一点是非常难得的。...当然,这要归功于方法——除了 SVM 之外,任何将计算表示为数据点的内积的方法,都可以使用方法进行非线性扩展。...,而不增加可调参数的个数(当然,前提是函数能够计算对应着两个输入特征向量的内积)。...关于拉格朗日乘子参数在函数方法中的求解,其实是与之前是一致的,因为函数能简化映射空间中的内积运算——刚好“碰巧”的是,在我们的 SVM 里需要计算的地方数据向量总是以内积的形式出现的。

    1.3K60
    领券