首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于逻辑回归的利用欠采样处理类别不平衡的

    这个信用卡欺诈数据集是从kaggle上下载的,网址(https://www.kaggle.com/mlg-ulb/creditcardfraud#creditcard.csv) 在这个网址里也有对数据集的详细介绍,从上面摘取一部分数据集介绍:数据集包含由欧洲持卡人于2013年9月使用信用卡进行交的数据。此数据集显示两天内发生的交易,其中284,807笔交易中有492笔被盗刷。数据集非常不平衡,正例(被盗刷)占所有交易的0.172%。它只包含作为PCA转换结果的数字输入变量,这是因为由于保密问题,我们无法提供有关数据的原始功能和更多背景信息。特征V1,V2,... V28是使用PCA获得的主要组件,没有用PCA转换的唯一特征是“时间”和“量”。特征'时间'包含数据集中每个刷卡时间和第一次刷卡时间之间经过的秒数。特征“金额”是交易金额,此特征可用于实例依赖的成本认知学习。特征'类'是响应变量,如果发生被盗刷,则取值1,否则为0。

    01
    领券