概要: 这篇博客和博客学习笔记|主成分分析[PCA]及其若干应用属于一个系列,介绍独立成分分析(Independent Component Analysis, ICA)的原理及简单应用。ICA也是一种矩阵分解算法,尽管它最开始不是基于此而提出来的。 关键字: 矩阵分解; 独立成分分析; ICA
有好些天没写博客了,最近一直忙着在看论文,解模型,着实有点头痛。今天趁着又到周末了更一帖(其实是模型解不下去了…),这次来说一下一个在信号分析与数据挖掘领域颇为使实用的算法,独立成分分析(ICA),这个算法的求解方式会让人决定新奇而有所启发,可能会给你带来新的思路,这一篇算法已经有很多大神写过了,比如: http://blog.csdn.net/neal1991/article/details/45128193 http://blog.csdn.net/u013802188/article/details/40923749 我在这里略作补充,说一下自己的见解,有不合适的地方欢迎大家指出
最近使用The Chip Analysis Methylation Pipeline,我们前面教程:450K芯片上面的甲基化探针到底需要进行哪些过滤 已经详细介绍过champ啦,这里我就只讲解我遇到的问题!
ICA(Independent Component Analysis,独立分量分析)是一种非常重要的信号处理技术,它的主要思想是将多个混合的信号分离成独立的信号源,广泛应用于信号处理、语音分离以及图像处理等领域。例如:在一个音乐舞会中,人们随着背景音乐翩翩起舞,技术人员能够通过ICA技术,利用多组录音设备还原人们谈话的内容~;在车载系统中,我们能够通过ICA技术,分离出发动机的噪声信息,最终通过主动降噪技术提供人们的驾驶体验;在脑电信号处理中,我们能够通过ICA技术分离EOG、ECG以及EMG噪声信号。本文章对盲信号分离技术的原理进行归纳汇总,具体如下图所示:
您是否曾经遇到过这样一种情况:您试图分析一个复杂且高度相关的数据集,却对信息量感到不知所措?这就是独立成分分析 (ICA) 的用武之地。ICA 是数据分析领域的一项强大技术,可让您分离和识别多元数据集中的底层独立来源。
今天我们给大家介绍下PCA,K-PCA以及ICA之间有什么关系,同时在R语言如何实现这几个模型。
ICA是用来分离混合源的技术。所以我们准备先混合,再分离,我们定义两个独立的源,上面的称为A,下面的称为B,代码如下:
本文利用R语言的独立成分分析(ICA)、谱聚类(CS)和支持向量回归 SVR 模型帮助客户对商店销量进行预测。首先,分别对商店销量的历史数据进行了独立成分分析,得到了多个独立成分;其次,利用谱聚类方法将商店销量划分成了若干类,并将每个类的特征进行了提取;最后,利用 SVR模型对所有的商店销量进行预测。实验结果表明,利用 FastICA、 CS和 SVR模型能够准确预测商店销量。
当我们面对样本需要建立相应模型时,使用传统统计方法建立模型需要大量的样本数据,只有在样本量足够大时,该模型才具有一定的可靠性,而实际实验中,不一定每次实验都拥有足够大的样本,甚至是小样本,这时使用传统统计方法来建立出的模型,在可靠性方面就存在一定的局限,难以达到理想的效果(点击文末“阅读原文”获取完整代码数据)。
论文名称:Spatio-temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks
最近发现一位同学整理了一些经典的降维算法,并用python实现常见降维算法的代码,特此推荐。作者:超爱学习
为什么要进行数据降维?直观地好处是维度降低了,便于计算和可视化,其深层次的意义在于有效信息的提取综合及无用信息的摈弃,并且数据降维保留了原始数据的信息,我们就可以用降维的数据进行机器学习模型的训练和预测,但将有效提高训练和预测的时间与效率。
A novel antibacterial peptide recognition algorithm based on BERT
sklearn(Scikit-learn)是python中一个提供机器学习算法的库,是一组简单有效的工具集,其开源、可复用。sklearn库的共分为6大部分,分别用于完成分类任务、回归任务、聚类任务、降维任务、模型选择以及数据的预处理。
过程监控中会用到很多中方法,如主成分分析(PCA)、慢特征分析(SFA)、概率MVA方法或独立成分分析(ICA)等为主流算法。
Rose小哥今天介绍一篇来自于arnauddelorme网站上的结合matlab代码案例来解释ICA原理(案例代码在后文中有提供)。
降维意味着我们在不丢失太多信息的情况下减少数据集中的特征数量,降维算法属于无监督学习的范畴,用未标记的数据训练算法。
本教程为脑机学习者Rose发表于公众号:脑机接口社区(微信号:Brain_Computer),QQ交流群:903290195
Hyvärinen A, Oja E. Independent component analysis: algorithms and applications.[J]. Neural Networks, 2000, 13(4-5):411-30.
概要: 这篇博客和博客 学习笔记|主成分分析[PCA]及其若干应用、学习笔记|独立成分分析(ICA, FastICA)及应用 属于一个系列,简单地介绍非负矩阵分解(Non-negative Matrix Factorization, NMF)。 关键字: 非负矩阵分解; NMF
进行数据初步处理(perl) 统计amplicon的RC(read counts),并且相互overlap大于75%的amplicon合并起来 统计每个amplicon的GC含量,均值, 性别识别并校
【1】 Fake News and Phishing Detection Using a Machine Learning Trained Expert System 标题:基于机器学习训练的专家系统在假新闻和钓鱼检测中的应用 链接:https://arxiv.org/abs/2108.08264
2.5. 分解成分中的信号(矩阵分解问题) 2.5.1. 主成分分析(PCA) 2.5.1.1. 准确的PCA和概率解释(Exact PCA and probabilistic interpretation) PCA 用于对一组连续正交分量中的多变量数据集进行方差最大方向的分解。 在 scikit-learn 中, PCA 被实现为一个变换对象, 通过 fit 方法可以降维成 n 个成分, 并且可以将新的数据投影(project, 亦可理解为分解)到这些成分中。 可选参数 whiten=Tr
安装必要的R语言包,如果下载速度比较慢,可选国内清华的R语言镜像,速度extremely fast
基本的R包已经实现了传统多元统计的很多功能,然而CRNA的许多其它包提供了更深入的多元统计方法,下面做个简要的综述。多元统计的特殊应用在CRNA的其它任务列表(task view)里也会提及,如:排序(ordination)会在Environmetrics(http://cran.r-project.org/web/views/Environmetrics.html)里说到;有监督的分类方法能在MachineLearning(http://cran.r-project.org/web/views/Machi
你遇到过特征超过1000个的数据集吗?超过5万个的呢?我遇到过。降维是一个非常具有挑战性的任务,尤其是当你不知道该从哪里开始的时候。拥有这么多变量既是一个恩惠——数据量越大,分析结果越可信;也是一种诅咒——你真的会感到一片茫然,无从下手。
在开始竞赛之前,我们要检查测试数据集的分布与训练数据集的分布,如果可能的话,看看它们之间有多么不同。这对模型的进一步处理有很大帮助.
如今,使用具有数百个(甚至数千个)特征的数据集变得非常普遍。如果要素的数量变得与存储在数据集中的观测值的数量相似(甚至更大!),则很可能导致机器学习模型过度拟合。为了避免此类问题,有必要应用正则化或降维技术(特征提取)。在机器学习中,数据集的维数等于用来表示数据集的变量数。
其中Wij(i=1,…,n,j=1,…,m)是某些常系数,这些系数就定义了这个线性表示.因此可以看出,为了得到数据yi的线性表示,必须求出未知系数Wij.简单起见,这种数据的表示可写成矩阵的形式:
近日英国物理学会出版社(IOP Publishing)公布了“CHINA TOP cited paper award 2021”,社区为大家汇总了神经工程领域顶级期刊《Journal of Neural Engineering》上荣获该荣誉的一些研究。【注:(1)排名不分先后;(2)如有遗失,欢迎补充;(3)介绍若有误,欢迎指出,后续会进行修改。】
【1】 Deep Graph Memory Networks for Forgetting-Robust Knowledge Tracing 标题:用于健忘型知识追踪的深图记忆网络 链接:https://arxiv.org/abs/2108.08105
对于皮层脑电图(ECoG)和头皮脑电图(sEEG)在定位大脑深层活动来源的能力上的不同尚不明显。与sEEG相比,ECoG的空间分辨率和信噪比更高,但其空间覆盖范围受到更多限制,有效测量组织活动的体积也是如此。本研究记录了4名顽固性癫痫患者在安静清醒状态下的多模式数据集,这些数据包括同步的头皮、硬膜下和深部EEG电极记录。本研究应用独立成分分析(ICA)来分离θ、α和β频段活动中的独立源。在所有患者中都观察到了硬膜下和头皮EEG成分,这与深部电极的一个或多个触点有显着的零滞后相关性。随后对相关成分的偶极建模显示,其偶极位置明显比非相关成分的偶极位置更接近深部电极。这些发现支持这样一种观点,即在两种记录方式中发现的成分都来自深部电极附近的神经活动。从本研究看,出于临床目的的将ECoG电极植入在靠近深部电极的位置,这并不能使源定位精度显著提高。此外,由于嵌入了ECoG电极的电隔离硅胶片,ECoG栅格衰减了sEEG。偶极子模型实验结果表明,sEEG的深源定位精度与ECoG相当。 1、背景 研究证明,与大脑深层结构的距离越大,记录的电极活动就越弱。在定位近端活动方面,ECoG较EEG有相当大的优势,具有优越的空间分辨率、频谱带宽和信噪比(SNR),因为记录不会被空间过滤或被头盖骨阻挡。然而,与EEG的整个头皮覆盖相比,ECoG网格或条带只覆盖皮质表面的有限区域,可能会影响更远端来源的局部化准确性。因此,到目前为止,还不清楚ECoG在定位深部和皮层下区域的源信号方面是否比EEG有优势。 要评估EEG和ECoG在深部源定位方面的实际比较,需要同时记录有/无创性的皮层和深层活动,如图1。
版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/50651464
网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 Python 实现了 11 种经典的数据抽取(数据降维)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并附有相关资料、展示效果;非常适合机器学习初学者和刚刚入坑数据挖掘的小伙伴。
网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 Python 实现了 11 种经典的数据抽取(数据降维)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并附有相关资料、展示效果;非常适合机器学习初学者和刚刚入坑数据挖掘的小伙伴。
帕金森患者在手臂伸展时可能会出现不同程度的复发性震颤。来自罗马大学的Alfredo Berardelli等人在Movement Disorders发文,旨在探讨初级运动皮质在复发性震颤中的作用,并与静止性震颤进行比较,研究复发性震颤的病理生理学。
网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 Python 实现了 11 种经典的数据抽取(数据降维)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并附有相关资料、展示效果;非常适合机器学习初学者和刚刚入坑数据挖掘的小伙伴。
【1】 Boosting Salient Object Detection with Transformer-based Asymmetric Bilateral U-Net 标题:基于Transformer的非对称双边U网增强显著目标检测 链接:https://arxiv.org/abs/2108.07851
所有函数和类的确切API,由docstrings给出。API会为所有功能提供预期类型和允许的功能,以及可用于算法的所有参数。 原文链接 : http://scikit-learn.org/stab
在本章中,我们将讨论无监督学习的实际应用。 我们的目标是训练模型,这些模型要么能够重现特定数据生成过程的概率密度函数,要么能够识别给定的新样本是内部数据还是外部数据。 一般而言,我们可以说,我们要追求的特定目标是发现异常,这些异常通常是在模型下不太可能出现的样本(也就是说,给定概率分布p(x) << λ,其中λ是预定义的阈值),或者离主分布的质心很远。
语音识别 TensorFlow 1.x中提供了一个语音识别的例子speech_commands,用于识别常用的命令词汇,实现对设备的语音控制。speech_commands是一个很成熟的语音识别原型,有很高的正确率,除了提供python的完整源码,还提供了c/c++的示例程序,方便你移植到嵌入设备及移动设备中去。 官方提供了关于这个示例的语音识别教程。不过实际就是一个使用说明,没有对代码和原理做过多解释。 这个程序相对前面的例子复杂了很多,整体结构、代码、算法都可以当做范本,我觉得我已经没有资格象前面的
摘要:数据竞赛对于大家理论实践和增加履历帮助比较大,但许多读者反馈不知道如何入门,本文以河北高校数据挖掘邀请赛为背景,完整梳理了从环境准备、数据读取、数据分析、特征工程和数据建模的整个过程。
领取专属 10元无门槛券
手把手带您无忧上云