首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python第二课——数据类型1

    day02(上午)主要讲了进制问题,小编之前已经发过了 day02(下午): 1.数据类型: 分类: 1).整数型:int浮点型(小数):float布尔型(True/False):bool 2).字符串型:str 列表:list元祖:tuple字典:dict集合:set【记住】都是容器类型 3).NoneType:取值None解释:空、不存在、没有、未知、不确定... 4).自定义类型:Person、Animal、Cat、Dog、Student... 2.字符串类型: 说明:今日讲解的内容只包含字符串所需知识的50%,还有50%后续再讲(函数) 2.1.字符串数据的特点: 1).是不可变的数据类型 2).它是容器类型数据,有长度,也有下标/索引(index) 掌握如下几个概念: 1).开始索引 0表示 2).结束索引 -1表示/length-1 如何访问字符串数据? 访问分为两部分考虑!! 1).获取字符串中的某个元素 通过字符串名字配合下标得到想要的元素内容 例如:str1[-1] 2).设置字符串中的元素 是不可以的,原因:字符串不可变 2.2.常见的一些错误 1).下标越界了 --> 运行时异常 错误类型:IndexError 理解:下标越界了 【注意】左右边界都有可能超出,所以要避免... 代码如下:错误现象

    03

    四种聚类方法之比较

    聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗、动物植物。目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别、数据分析、图像处理、市场研究、客户分割、Web文档分类等[1]。  聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离。  聚类技术[2]正在蓬勃发展,对此有贡献的研究领域包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等。各种聚类方法也被不断提出和改进,而不同的方法适合于不同类型的数据,因此对各种聚类方法、聚类效果的比较成为值得研究的课题。 1 聚类算法的分类  目前,有大量的聚类算法[3]。而对于具体应用,聚类算法的选择取决于数据的类型、聚类的目的。如果聚类分析被用作描述或探查的工具,可以对同样的数据尝试多种算法,以发现数据可能揭示的结果。  主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法[4-6]。  每一类中都存在着得到广泛应用的算法,例如:划分方法中的k-means[7]聚类算法、层次方法中的凝聚型层次聚类算法[8]、基于模型方法中的神经网络[9]聚类算法等。  目前,聚类问题的研究不仅仅局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类[10]也是聚类分析中研究较为广泛的一个分支。模糊聚类通过隶 属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。目前已有很多关于模糊聚类的算法被提出,如著名的FCM算法等。  本文主要对k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法通过通用测试数据集进行聚类效果的比较和分析。 2 四种常用聚类算法研究 2.1 k-means聚类算法  k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。  k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地 选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。 这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下:

    01

    基于MRI医学图像的脑肿瘤分级

    本文对近年来脑磁共振(MR)图像分割和肿瘤分级分类技术进行概述。文章强调了早期发现脑肿瘤及其分级的必要性。在磁共振成像(MRI)中,肿瘤可能看起来很清楚,但医生需要对肿瘤区域进行量化,以便进一步治疗。数字图像处理方法和机器学习有助于医生进一步诊断、治疗、手术前后的决策,从而发挥放射科医生和计算机数据处理之间的协同作用。本文旨在回顾以胶质瘤(包括星形细胞瘤)为靶点的肿瘤患者的脑部MR图像分割和分类的最新进展。阐述了用于肿瘤特征提取和分级的方法,这些方法可以整合到标准临床成像协议中。最后,对该技术的现状、未来发展和趋势进行了评估。本文发表在Biomedical Signal Processing and Control杂志。

    03

    FIR 带通滤波器设计

    %本文将针对一个含有 5Hz 、 15Hz 和 30Hz 的混和正弦波信号, 设计一个 FIR 带通滤波器, %给出利用 MATLAB 实现的三种方法: 程序设计法、 FDATool 设计法和 SPTool 设计法。 参 %数要求:采样频率 fs=100Hz ,通带下限截止频率 fc1=10 Hz ,通带上限截止频率 fc2=20Hz ,过渡带宽 6 Hz,通阻带波动 0.01 ,采用凯塞窗设计。 fc1 =10 ; fc2 =20 ; fs=100 ; [n,Wn,beta,ftype]=kaiserord([7 13 17 23],[0 1 0],[0.01 0.01 0.01],100); %得出滤波器的阶数 n=38 , beta=3.4 w1=2*fc1/fs; w2=2*fc2/fs;% 将模拟滤波器的技术指标转换为数字滤波器的技术指 window=kaiser(n+1,beta);% 使用 kaiser 窗函数 b=fir1(n,[w1 w2],window); %使用标准频率响应的加窗设计函数 fir1 freqz(b,1,512);% 数字滤波器频率响应 t = (0:100)/fs; s = sin(2*pi*t*5)+sin(2*pi*t*15)+sin(2*pi*t*30);% 混和正弦波信号 sf = filter(b,1,s); %对信号 s 进行滤波

    02
    领券