1.中值滤波(medianBlur) 中值滤波是非线性的图像处理方法,在去噪的同时可以兼顾到边界信息的保留。选一个含有奇数点的窗口,将这个窗口在图像上扫描,把窗口中所含的像素点按灰度级的升或降序排列,取位于中间的灰度值来代替该点的灰度值。
双边滤波器是同时考虑空间域和值域信息的类似传统高斯平滑滤波器的图像滤波、去噪、保边滤波器。其模板系数是空间系数d与值域系数r的乘积。其思想是:空间系数是高斯滤波器系数,值域系数为考虑了邻域像素点与中心像素点的像素值的差值,当差值较大时,值域系数r较小,即,为一个递减函数(高斯函数正半部分),带来的结果是总的系数w=d*r变小,降低了与“我”差异较大的像素对我的影响。从而达到保边的效果,同时,有平滑的作用。
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547 第36章 FIR滤波器的Matlab设计(含低通,高通,
来源:DeepHub IMBA本文约4300字,建议阅读8分钟本文将讨论图像从FFT到逆FFT的频率变换所涉及的各个阶段,并结合FFT位移和逆FFT位移的使用。 图像处理已经成为我们日常生活中不可或缺的一部分,涉及到社交媒体和医学成像等各个领域。通过数码相机或卫星照片和医学扫描等其他来源获得的图像可能需要预处理以消除或增强噪声。频域滤波是一种可行的解决方案,它可以在增强图像锐化的同时消除噪声。 快速傅里叶变换(FFT)是一种将图像从空间域变换到频率域的数学技术,是图像处理中进行频率变换的关键工具。通过利用图
以上这篇Python利用FFT进行简单滤波的实现就是小编分享给大家的全部内容了,希望能给大家一个参考。
http://blog.csdn.net/iamoyjj/archive/2009/05/15/4190089.aspx
本章节为大家讲解二代示波器中用到的FFT和FIR。单纯从应用上来说,比较省事,调用API函数即可,从学习的角度来说,需要大家花点精力。
算法:组合滤波器是先对图片添加椒盐噪声,先采用中值滤波器进行去噪处理,然后采用巴特沃斯低通滤波和同态滤波混合滤波器进行图像处理。
使用说明:将下列代码幅值然后以m文件保存,文件名要与函数名相同,这里函数名:lowp。
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547 第43章 IIR滤波器的Matlab设计 本章节讲解II
现假定相机不动,图像f(x,y)在图像面上移动并且图像f(x,y)除移动外不随时间变化。令x0(t)和y0(t)分别代表位移的x分量和y分量,那么在快门开启的时间T内,胶片上某点的总曝光量是图像在移动过程中一系列相应像素的亮度对该点作用之总和。也就是说,运动模糊图像是由同一图像在产生距离延迟后与原图像想叠加而成。如果快门开启与关闭的时间忽略不计,则有:
y ( 0 ) = ∑ 0 N h ( i ) x ( i ) y(0)=\sum _{0}^Nh(i)x(i) y(0)=∑0Nh(i)x(i)
Scipy 的信号处理模块提供了丰富的工具,用于处理和分析信号数据。在本篇博客中,我们将深入介绍 Scipy 中的信号处理功能,并通过实例演示如何应用这些工具。
图 (a): (从左到右) (1) 原始图片 (2) 使用高斯低通滤波器 (3) 使用高斯高通滤波器. 本文中的原始图像来自OpenCV Github示例。
算法:有约束滤波器是在一定的约束条件下,其输出与一给定函数(通常称为期望输出)的差的平方达到最小,通过数学运算最终可变为一个托布利兹方程的求解问题。
算法:无约束滤波器是对退化的图像进行二位傅里叶变换;计算系统点扩散函数的二位傅里叶变换;引入 H(fx,fy)计算并且对结果进行逆傅里叶变换。
注:本文章仅供参考,本人并非通信专业,相关知识早已忘得差不多了,所以不要再问我相关问题啦~sorry
简单来说,傅里叶变换是将输入的信号分解成指定样式的构造块。例如,首先通过叠加具有不同频率的两个或更多个正弦函数而生成信号f(x),之后,仅查看f(x)的图像缺无法了解使用哪种或多少原始函数来生成f(x)。
import os import numpy as np import cv2 import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus']=False #高频增强滤波器 (滤波器选择巴特沃斯高通滤波器) def Enhance_PassFilter(image,d,n,s1): f=np.fft.fft2(image) fshif
卷积神经网络 (CNN) 得到了广泛的应用并且事实证明他是非常成功的。但是卷积的计算很低效,滑动窗口需要很多计算并且限制了过滤器的大小,通常在 [3,3] 到 [7,7] 之间的小核限制了感受野(最近才出现的大核卷积可以参考我们以前的文章),并且需要许多层来捕获输入张量的全局上下文(例如 2D 图像)。图像越大小核的的表现就越差。这就是为什么很难找到处理输入高分辨率图像的 CNN模型。
算法:高通滤波将傅里叶变换结果图像中的低频分量值都替换为0,即屏蔽低频信号,只保留高频信号,实现高通滤波。高通滤波器使低频信号衰减而让高频信号通过,将增强图像中尖锐细节,但是会导致图像对比度降低。高频信号对应图像内变化越来越快的灰度分量,是由灰度尖锐过渡造成的。
这个课题在很久以前就已经有所接触,不过一直没有用代码去实现过。最近买了一本《机器视觉算法与应用第二版》书,书中再次提到该方法:使用傅里叶变换进行滤波处理的真正好处是可以通过使用定制的滤波器来消除图像中某些特定频率,例如这些特定频率可能代表着图像中重复出现的纹理。
1、产生下图所示亮块图像 f1(x,y)(128×128大小,暗处=0,亮处=255),对其进行FFT。
假设有一段10kHz的语言,现需要对2~3kHz之间的语言信号进行提取,要求1.5kHz及3.5kHz以上的频率需要有40dB的衰减
傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。
按照题目要求,首先应利用计算机生成一个由多个频率叠加而成的信号。之后在不通风抽样频率之下对信号进行采样。编写FFT程序对信号进行DFT变换,应能观察出在满足和不满足奈奎斯特采样定理的情况下信号频谱分别处于不混叠和混叠状态。然后需要对信号进行恢复以观察满足或不满足奈奎斯特采样定理的情况下,频域的频谱混叠对时域恢复信号的影响。在频谱混叠时,观察其时域信号的失真。
MFCC(Mel-frequency cepstral coefficients):梅尔频率倒谱系数。梅尔频率是基于人耳听觉特性提出来的, 它与Hz频率成非线性对应关系。梅尔频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征。主要用于语音数据特征提取和降低运算维度。例如:对于一帧有512维(采样点)数据,经过MFCC后可以提取出最重要的40维(一般而言)数据同时也达到了将维的目的。
上节简单的写了一下音频滤波器的定义和作用。而这篇文章将主要集中精力在巴特沃斯过滤器上,在末尾将会给出:使用 Butterworth 设计的二阶 IIR 滤波器。
傅立叶变换用于分析各种滤波器的频率特性。对于图像,使用2D离散傅里叶变换(DFT)查找频域。一种称为快速傅立叶变换(FFT)的快速算法用于DFT的计算。关于这些的详细信息可以在任何图像处理或信号处理教科书中找到。请参阅其他资源部分。
数字信号处理课设,我们使用MATLAB对语音信号进行了一系列处理,并将其所有功能集中于下图界面中:
实际代码,没有整理,可以读取txt文本文件,然后进行低通滤波,并将滤波前后的波形和FFT变换都显示出来
可以通过对脑电信号进行分析得到较为准确反映用户的行为以及思想方式,在进行分析前需要提取脑电信号中的Delta波,Theta波,Alpha波,Beta波以及Gamma波。
图像处理不仅可以在空间域进行还可以在频率域进行,把空间域的图像开窗卷积形式,变换得到频率域的矩阵点乘形式得到比较好的效果。转换到频率域最常见的是通过傅里叶变换得到图像的频率域表示,处理之后再反变换回去。支持各种卷积处理的效果,比如模糊,梯度提取等,OpenCV中支持傅里叶变换与逆变换的函数分别为
在 GNU Radio OFDM 系统中,一个非常重要的环节是在接收端准确地同步和检测发送端发出的信号。这就是 Schmidl & Cox 同步算法发挥作用的地方。Schmidl & Cox 算法是一种用于 OFDM 信号的时间同步的技术。本文对其底层 C++ 源码进行学习记录。
摘要:MATLAB是十分强大的用于数据分析和处理的工程实用软件,利用其来进行语音信号的分析、处理和可视化十分便捷。文中介绍了在MATLAB环境中如何驱动声卡采集语音信号和语音信号采集后的文档处理方法,并介绍了FFT频谱分析原理及其显示、MATLAB中相关函数的功能、滤波器的设计和使用。在此基础上,对实际采集的一段含噪声语音信号进行了相关分析处理,包括对语音信号的录取和导入,信号时域和频域方面的分析,添加噪声前后的差异对比,滤波分析,语音特效处理。结果表明利用MATLAB处理语音信号十分简单、方便且易于实现。
最近一个朋友发了一个效果图,是关于条纹去除的,问我有没有什么好的方法,实现这个功能,给我的参考图片如下所示:
本教程为脑机学习者Rose发表于公众号:脑机接口社区(微信号:Brain_Computer),QQ交流群:903290195
MATLAB函数 fir1 和 fftfilt 的功能及其调用格式可以用 help 命令查阅;
前言:最近研究汽车碰撞的加速度信号,在信号的采集过程中难免遇到噪音,导致信号偏差,为了更好的反映系统情况,故常需要信号去噪,本文分享一些 常用信号平滑去噪的方法。
傅里叶变换的提出让人们看问题的角度从时域变成了频域,多了一个维度。快速傅里叶变换算法的提出普及了傅里叶变换在工程领域的应用,在科学计算和数字信号处理等领域,离散傅里叶变换(DFT)至今依然是非常有效的工具之一。
我们在项目中经常会遇到音频信号的采集处理,我们今天做一个最简单的音频采集模块。它的电路其实就是在我们上节课的三极管的放大电路上的一个改进,在上一节课三极管放大电路的基础之上,将输出信号换成驻极体话筒,输出端加上截止频率在20KHZ左右的RC低通滤波电路,通过滤波电路来滤除频率在20KHZ以上的噪声信号。
算法:同态滤波器是一种在频域中同时能够压缩图像的亮度范围和增强图像对比度的方法,将像元灰度值看作是照度和反射率两个组份的产物。由于照度相对变化很小,可以看作是图像的低频成份,而反射率则是高频成份。通过分别处理照度和反射率对像元灰度值的影响,达到揭示阴影区细节特征的目的。
维纳滤波(wiener filtering) 一种基于最小均方误差准则、对平稳过程的最优估计器。这种滤波器的输出与期望输出之间的均方误差为最小,因此,它是一个最佳滤波系统。它可用于提取被平稳噪声污染的信号。
脉冲压缩指雷达在发射时采用宽脉冲信号,接收和处理回波后输出窄脉冲。脉冲压缩技术是匹配滤波理论和相关接收理论的一个很好的实际应用。很好地解决了这样的一个问题:在发射端发射大时宽、带宽信号,以提高信号的发射能量,而在接收端,将宽脉冲信号压缩为窄脉冲,以提高雷达对目标的距离分辨精度和距离分辨力。该技术解决了雷达远距离探测与高精度测距性能不可兼顾的问题,是现代雷达中不可缺少的关键技术。
傅里叶变换被用来分析各种过滤器的频率特性。对于图像,二维离散傅里叶变换(DFT)被用来寻找频域。一种叫做快速傅里叶变换(FFT)的快速算法被用来计算DFT。关于这些的细节可以在任何图像处理或信号处理教科书中找到。请看其他资源部分。
领取专属 10元无门槛券
手把手带您无忧上云