gcloud ml-engine是Google Cloud Platform(GCP)提供的一项机器学习服务。它允许用户在云端进行大规模机器学习模型的训练和部署。不过,根据提供的问答内容,没有提到名为"XXX"的模块,因此无法给出相关信息和推荐的腾讯云产品链接。请提供具体的模块名或相关问题以便我提供更准确和详细的答案。
本文介绍了如何使用Google Cloud Platform进行深度学习训练和部署。作者首先介绍了Google Cloud Platform的特点和优势,然后详细讲解了如何利用TensorFlow和Keras在Google Cloud Platform上部署和训练深度学习模型。作者还通过一个实际的案例演示了如何使用Google Cloud Platform进行训练和部署深度学习模型,并分享了在使用过程中需要注意的一些重要细节。
本文介绍了如何使用Google Cloud Platform进行深度学习训练和部署,包括TensorFlow、Keras、PyTorch等框架的使用。作者通过在Google Cloud Platform中创建项目、配置训练环境、使用Cloud Storage上传数据集、使用TensorFlow训练模型、将模型部署到Cloud Machine Learning Engine中等一系列操作,展示了如何使用Google Cloud Platform进行高效的深度学习训练和部署。
张量处理单元(TPU)是能够大大加快深度学习模型训练速度的硬件加速器。在斯坦福大学进行的独立测试中,在 TPU 上训练的 ResNet-50 模型能够在 ImageNet 数据集上以最快的速度(30 分钟)达到预期的准确率。
在很多歌迷眼里,尤其是喜欢乡村音乐的人,“霉霉”Taylor Swift是一位极具辨识度也绝对不能错过的女歌手。在美国硅谷就有一位非常喜欢 Taylor Swift 的程序媛 Sara Robinson,同时她也是位很厉害的 APP 开发者。喜爱之情难以言表,于是利用机器学习技术开发了一款iOS 应用,可以随时随地识别出 Taylor Swift~~~
是否能够更快地训练和提供对象检测模型?我们已经听到了这种的反馈,在今天我们很高兴地宣布支持训练Cloud TPU上的对象检测模型,模型量化以及并添加了包括RetinaNet和MobileNet改编的RetinaNet在内的新模型。本文将引导你使用迁移学习在Cloud TPU上训练量化的宠物品种检测器。
本框架是Google发布于ICLR2020顶会上,这两天发布于Google Blog上
【导读】CoreML是2017年苹果WWDC发布的最令人兴奋的功能之一。它可用于将机器学习整合到应用程序中,并且全部脱机。CoreML提供的机器学习 API,包括面部识别的视觉 API、自然语言处理 API 。苹果软件主管兼高级副总裁 Craig Federighi 在大会上介绍说,Core ML 致力于加速在 iPhone、iPad、Apple Watch 等移动设备上的人工智能任务,支持深度神经网络、循环神经网络、卷积神经网络、支持向量机、树集成、线性模型等。本文将带你从最初的数据处理开始教你一步一步的
【导读】本文是谷歌机器学习工程师 Chris Rawles 撰写的一篇技术博文,探讨了如何在 TensorFlow 和 tf.keras 上利用 Batch Normalization 加快深度神经网络的训练。我们知道,深度神经网络一般非常复杂,即使是在当前高性能GPU的加持下,要想快速训练深度神经网络依然不容易。Batch Normalization 也许是一个不错的加速方法,本文介绍了它如何帮助解决梯度消失和梯度爆炸问题,并讨论了ReLu激活以及其他激活函数对于抵消梯度消失问题的作用。最后,本文使用Te
张量处理单元(TPU)是 Google Cloud Platform(GCP)上高性能 AI 应用的基本构建块。 在本节中,我们将重点介绍 GCP 上的 TensorFlow。 本节包含三章。 我们将深入介绍 Cloud TPU,以及如何利用它们来构建重要的 AI 应用。 我们还将通过利用 Cloud TPU 构建预测应用,使用 Cloud ML Engine 实现 TensorFlow 模型。
最近在准备 CKA 考试,所以需要搭建一个 Kubernetes 集群来方便练习.GCP 平台新用户注册送 300 刀体验金,所以就想到用 kubeadm 在 GCP 弄个练练手,既方便又省钱.
在本节中,我们将介绍 Google Cloud Platform(GCP)上的无服务器计算基础。 我们还将概述 GCP 上可用的 AI 组件,并向您介绍 GCP 上的各种计算和处理选项。
TensorFlow是一个开源机器学习平台,支持深度学习等高级机器学习方法。本页面介绍了 Earth Engine 中的 TensorFlow 特定功能。尽管 TensorFlow 模型是在 Earth Engine 之外开发和训练的,但 Earth Engine API 提供了以 TFRecord 格式导出训练和测试数据以及以 TFRecord 格式导入/导出图像的方法。有关如何开发管道以将 TensorFlow 与 Earth Engine 中的数据结合使用的更多信息,请参阅 TensorFlow 示例页面。请参阅 TFRecord 页面以了解有关 Earth Engine 如何将数据写入 TFRecord 文件的更多信息。
来源:Google 作者:文强 【新智元导读】还愁用不起GPU?今天谷歌宣布云端可抢占GPU大幅降价,P100的价格每小时0.43美元,换算成人民币只需2.77元。 不是每个人工作的时候都需要GPU
人工智能 (AI) 越来越多地用于所有主要行业的各种用途,包括但不限于医疗保健、零售、金融、房地产和运输。在交通领域,特斯拉、通用汽车、福特、Alphabet、苹果和英伟达等公司已经开始投资开发自动驾驶汽车技术。此外,一些自动驾驶卡车初创公司和美国铁路协会已经制定了自动驾驶汽车的指导方针。
2017年是机器学习大放异彩的一年,这归功于众多公司广泛而深入地研究和开发更新颖、更高效的工具和框架。这里介绍,有望在2018年大行其道的10种机器学习的工具和框架。 1.亚马逊Sagemaker A
AWS re:Invent 2017上宣布的一款重大产品就是正式发布的亚马逊Sagemaker,这种新的框架简化了构建机器学习模型并部署到云端的任务。
背景:最近我们看到了一篇文章,关于如何用于你自己的数据集,训练Tensorflow的对象检测API。这篇文章让我们对对象检测产生了关注,正巧圣诞节来临,我们打算用这种方法试着找到圣诞老人。 文章地址:https://medium.com/towards-data-science/how-to-train-your-own-object-detector-with-tensorflows-object-detector-api-bec72ecfe1d9 代码在下面的地址中。从这段代码中生成的模型可以扩展,以发
【导读】本文利用TensorFlow构建了一个用于产品推荐的WALS协同过滤模型。作者从抓取数据开始对模型进行了详细的解读,并且分析了几种推荐中可能隐藏的情况及解决方案。 作者 | Lak Laksh
随着软件供应链攻击的增加,保护我们的软件供应链变得更加重要。此外,在过去几年中,容器的采用也有所增加。有鉴于此,对容器镜像进行签名以帮助防止供应链攻击的需求日益增长。此外,我们今天使用的大多数容器,即使我们在生产环境中使用它们,也容易受到供应链攻击。在传统的 CI/CD 工作流中,我们构建镜像并将其推入注册中心。供应链安全的一个重要部分是我们构建的镜像的完整性,这意味着我们必须确保我们构建的镜像没有被篡改,这意味着保证我们从注册中心中提取的镜像与我们将要部署到生产系统中的镜像相同。证明镜像没有被篡改的最简单和最好的方法之一(多亏了 Sigstore)是在构建之后立即签名,并在允许它们部署到生产系统之前验证它。这就是 Cosign 和 Kyverno 发挥作用的地方。
将机器学习(ML)模型部署到生产环境中的一个常见模式是将这些模型作为 RESTful API 微服务公开,这些微服务从 Docker 容器中托管,例如使用 SciKit Learn 或 Keras 包训练的 ML 模型,这些模型可以提供对新数据的预测。然后,可以将它们部署到云环境中,以处理维护连续可用性所需的所有事情,例如容错、自动缩放、负载平衡和滚动服务更新。
大家好,我是猫头虎博主!今天要跟大家分享的是Google Cloud最近宣布的App Engine标准环境中新的Go 1.11运行时。这次更新不仅带来了对Go社区长期以来需求的支持,而且还包括了对云应用开发模式的重大改进。让我们一起探索这一刷新人心的技术进展!
嗨,各位技术同好,我是猫头虎,一位对Go语言和容器技术充满热情的博主。今天,我们将探讨如何使用Docker来部署Go服务器,一种既高效又现代的部署方式。如果你对Docker和Go都感兴趣,那就跟我一起深入了解吧!
机器学习是计算机科学、人工智能和统计学的研究领域。机器学习的重点是训练算法以学习模式并根据数据进行预测。机器学习特别有价值,因为它让我们可以使用计算机来自动化决策过程。
关注容器圈的朋友一定会注意到最近一年的高频词:Service Mesh。这么绕口的词,到底是什么意思?引用一篇文章里对其的解释:
在本节中,您将基于从上一节中获得的理解,并开发更新的概念并学习用于动作识别和对象检测的新技术。 在本节中,您将学习不同的 TensorFlow 工具,例如 TensorFlow Hub,TFRecord 和 TensorBoard。 您还将学习如何使用 TensorFlow 开发用于动作识别的机器学习模型。
该工具基于Google的OSS-Fuzz平台实现其功能,并对生成的目标执行基准测试。
日志从传统方式演进到容器方式的过程就不详细讲了,可以参考一下这篇文章Docker日志收集最佳实践,由于容器的漂移、自动伸缩等特性,日志收集也就必须使用新的方式来实现,Kubernetes官方给出的方式基本是这三种:原生方式、DaemonSet方式和Sidecar方式。
最近我们构建和部署服务的方式与原来相比简直就是突飞猛进,像那种笨拙的、单一的、用于构建单体式应用程序的方式已经是过去式了。我们努力了这么久,终于达到了现在的效果。现在的应用为了提供更好的拓展性和可维护性,都会去拆解成各种相互依赖小、解耦性强的微服务,这些服务有各自的依赖和进度。如果你想去构建你所负责的服务,那么从一开始,就应该使用 CI/CD 的方式;当然,如果你走上了这条路, Jenkins 就是你的良师益友。
因为模块名在Python程序中会变成变量名。因此,应该遵循变量命名规则。例如:你不能建立一个名为def的模块。
上月初,谷歌宣布其正收购科学数据平台kaggle。其中,kaggle平台的许多评论家以及新闻报道者也以吸收人才的方式一并被收购。与此同时,kaggle平台目前也在大量招聘数据科学家和工程师。 在谷歌宣布收购kaggle平台后,其首席科学家李飞飞在一份声明中以引人关注的模糊术语解释了该收购项目: 在谷歌Next’17大会的主题演讲中,我强调了人工智能民主化的重要性。我们必须降低大家进入人工智能的门槛,使人工智能能够普遍适用于规模较大的开发商、用户和企业社区,以便他们能够将其应用于自己的特定的需求。随着Kag
原题:MICRONAUT: A JAVA FRAMEWORK FOR THE FUTURE, NOW
最初于2018年11月17日在Medium发布。自此以来,该帖子已更新,可以使用最新版本的JHipster(6.3.0)和Istio(1.3.0)。
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说Kubernetes容器日志收集「建议收藏」,希望能够帮助大家进步!!!
在本章中,我们将讨论如何将生成对抗网络(GAN)用于深度学习领域,其中关键方法是训练图像生成器来挑战鉴别器,并同时训练鉴别器来改进生成器。 可以将相同的方法应用于不同于图像领域。 另外,我们将讨论变分自编码器。
The Go Blog Announcing App Engine’s New Go 1.11 Runtime
为了连接到 TPU,我们必须配置一台虚拟机(单独结算)。要注意的是虚拟机和TPU是分别计费的。
本号之前已经分享过关于如何使用 Python 中的数据处理分析包 pandas 处理 Excel 的数据,本文继续分享一个小案例,此案例源于上周末帮朋友做的一个需求,并且是以 vba 编写解决,后来我用 Python 再解决一次,通过本文作简单分享。
2018年,谷歌推出了云AutoML,引起了广泛关注,是机器学习和人工智能领域最重要的工具之一。在本文中,你将学习“AutoML”,这是一种借助 Google 云 AutoML 构建机器学习模型的无代码解决方案。
最近,我一直在Kubernetes上进行各种测试和部署。因此,我不得不一次又一次创建和销毁Kubernetes集群,有的时候甚至在一个小时内执行好几次。但由于我需要测试的某个事项需要一个全新的集群,所以简单地删除所有的pod、service、deployment等,来让集群变得“像新的一样”并没有任何作用。
今天小编和大家来聊一下SQLALchemy这个模块,该模块是Python当中最有名的ORM框架,该框架是建立在数据库API之上,使用关系对象映射进行数据库的操作,简而言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。
你需要知道你的算法在看不见的数据上表现如何。
在 AIGC 全面爆发的今天,美国旧金山地铁仍然沿用着已经被淘汰的软盘技术,而纽约地铁还被困在 100 年前的 IT 架构上。
客座文章最初由DoiT International高级云架构师Mike Sparr在DoiT博客上发布
可以配置 VerticalPodAutoscaler CRD来对容器的CPU以及内存需求进行分析和调整。
体验链接: http://www.shadowingszy.top/train-tickets/index.html
本文向您介绍两种访问谷歌Gemini语言模型的途径:Vertex AI和Google AI Studio,并详细阐述每种方法的使用入门指南。
最近研究了几天 appr.tc 服务器的搭建,主要目的是想在本地搭建一套 webrtc 服务器环境,可以做一些webrtc相关的实验。
领取专属 10元无门槛券
手把手带您无忧上云