pytorch中的线性回归 简介: 线性回归是一种基本的机器学习模型,用于建立输入特征与连续输出之间的关系。...线性回归原理 在线性回归中,我们假设输入特征 X 与输出 Y 之间的关系可以表示为: Y = WX + b 其中, W 是特征的权重(系数), b 是偏置项,用于调整输出值。...通常使用最小化均方误差(Mean Squared Error,MSE)来衡量预测值与真实值之间的差距。 实现线性回归 在 PyTorch 中,我们可以利用自动求导功能和优化器来实现线性回归模型。...下面是一个简单的线性回归示例代码: 我们的目的是:预测输入特征X与对应的真实标签Y之间的关系。...,线性回归模型的方程为: Y = 1.9862X + 0.0405 其中: Y 是预测的因变量值, - X 是自变量的值。
机器学习中的线性回归 简介 线性回归是机器学习领域中最简单而有效的模型之一。它用于建立自变量(输入)和因变量(输出)之间的线性关系。在实际应用中,线性回归广泛用于预测、分析和建模。...让我们深入了解线性回归的基本原理和应用。 基本原理 线性回归基于假设,即自变量和因变量之间存在线性关系。...下面是一些公司应用线性回归的实际场景: 1. 零售行业 零售公司可以使用线性回归来预测产品销售量。...多变量线性回归 前面的例子是单变量线性回归,但线性回归也适用于多个自变量的情况。...它们通过在成本函数中引入正则化项,惩罚系数过大的模型,从而提高模型的泛化能力。
回归分析(regression analysis) 回归分析是研究自变量与因变量之间关系形式的分析方法,它主要是通过建立因变量Y与影响它的自变量Xi(i=1,2,3...)之间的回归模型,来预测因变量Y...简单线性回归模型 Y=a+b*X+e Y——因变量 X——自变量 a——常数项,是回归直线在纵轴上的截距 b——回归系数,是回归直线的斜率 e——随机误差,即随机因素对因变量所产生的影响...回归分析函数 lm(formula) formula:回归表达式y~x+1 lm类型的回归结果,一般使用summary函数进行查看 预测函数 predic(lmModel,predictData...,level=置信度) 参数说明: lmModel:回归分析得到的模型 predictData:需要预测的值 level:置信度 返回值:预测结果 data <- read.table('data.csv...newData.csv', header=T, sep=',', fileEncoding = 'utf8'); fix(pData) predict(lmModel, pData, level=0.95) 多重线性回归
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
手写线性回归 使用numpy随机生成数据 import numpy as np import matplotlib.pyplot as plt # 生成模拟数据 np.random.seed(42)...对于线性拟合,其假设函数为: h_θ(x)=θ_1x+θ_0 这其中的 θ 是假设函数当中的参数。...当假设函数中的系数 θ 取不同的值时, \frac{1}{2m} 倍假设函数预测值 h_θ(x^{(i)}) 和真实值 y^{(i)} 的差的平方的和之间的函数关系表示为代价函数 J 。...) plt.ylabel('y') plt.legend() plt.title('Linear Regression using Gradient Descent') plt.show() 实现多元线性回归...多元线性回归的梯度下降算法: θ_j≔θ_j−α\frac{∂J(θ)}{∂θ_j} 对 \frac{∂J(θ)}{∂θ_j} 进行等价变形: θ_j≔θ_j−α\frac{1}{m}∑_{i=1}^
pytorch中的非线性回归 简介:非线性回归是指因变量(目标输出)与自变量(特征输入)之间的关系不是线性的情况。...与线性回归不同,非线性回归中因变量与自变量之间的关系可能是曲线状的,可以是多项式关系、指数关系、对数关系等。在非线性回归中,模型的拟合函数通常不是线性的,因此需要使用其他方法来拟合数据。...下面是PyTorch 实现非线性回归,并解释代码中的关键部分。...[-1, 1]之间的100个数据点 Y = X.pow(2) + 0.2 * torch.rand(X.size()) # 添加噪声 定义一个简单的非线性回归模型。...在这个例子中,使用一个具有单个隐藏层的神经网络模型。隐藏层使用 ReLU 激活函数,输出层不使用激活函数。
【导读】本文是一篇专门介绍线性回归的技术文章,讨论了机器学习中线性回归的技术细节。线性回归核心思想是获得最能够拟合数据的直线。...文中将线性回归的两种类型:一元线性回归和多元线性回归,本文主要介绍了一元线性回归的技术细节:误差最小化、标准方程系数、使用梯度下降进行优化、残差分析、模型评估等。在文末给出了相关的GitHub地址。...Linear Regression — Detailed View 详细解释线性回归 线性回归用于发现目标与一个或多个预测变量之间的线性关系。...有两种类型的线性回归 – 一元线性回归(Simple)和多元线性回归(Multiple)。 一元线性回归 ---- 一元线性回归对于寻找两个连续变量之间的关系很有用。...这些信息可以从残差信息中获得。 我们通过一个例子来解释残差的概念。考虑一下,我们有一个数据集,可以预测给定当天气温,其果汁的销售量。从回归方程预测的值总会与实际值有一些差异。
大家好,又见面了,我是你们的朋友全栈君。 刚开始学习机器学习的时候就接触了均方误差(MSE,Mean Squared Error),当时就有疑惑,这个式子是怎么推导的,但是因为懒没有深究。...今天看到了唐宇迪老师的机器学习课程,终于理解他是怎么推导的了。一定要一步一步看下去,别看他公式这么多,随便认真看一下就能理解的! 问题描述 我们有工资和年龄两个特征,要预测银行会贷款给我们多少钱?...似然函数 似然函数用于参数估计,即求出什么样的参数跟我们给出的数据组合后能更好的预测真实值,有: (6) 取(6)式对数,将连乘转化为加法,这也是一般似然函数的求解方法: (7) 将(7...)式展开并化简有: (8) (8)式等式右侧的第一项为一个常量,似然函数要取最大值,因而第二项越小越好,有: (9) (9)式相当于最小二乘法的式子,即是均方误差的表达式。...下一步我们要解出 θ θ θ的表达式 4.
线性模型形式简单、易于建模,但却蕴含着机器学习中一些重要的基本思想。许多功能更为强大的非线性模型都可在线性模型的基础上引入层级结构或高维映射得到。...;xd),其中xi是x是第i个属性上的取值,线性模型试图学得一个通过属性的线性组合来进行预测的函数,即f(x)=w1x1+w2x2+...wdxd+b,一般用向量形式写成f(x)=wTx+b,w和b学得之后模型就得以确定...线性回归 下面我们用一个预测房价的例子来说明。...由此我们可以看出,房价和人口百分比成反比,与房间数成正比 通过梯度下降法计算回归参数,实现线性回归模型 关于梯度下降可以参看这篇文章 import numpy as np class LinearRegressionByMyself...y_line_fit = Linear_model.predict(X_fit) linear_r2 = r2_score(y, Linear_model.predict(X)) #二次模型,先二次变换再线性回归
线性模型、线性回归与广义线性模型 逻辑回归 工程应用经验 数据案例讲解 1....线性模型、线性回归与广义线性回归 1.1 线性模型 image 线性模型(linear model)试图学得一个通过属性的线性组合来进行 预测的函数: image 向量形式: image 简单...太小收敛速度太慢 太大会震荡甚至不收敛 一元的损失函数 image image 欠拟合与过拟合(以多项式回归为例) image 欠拟合:模型没有很好地捕捉到数据特征,不能够很好地拟合数据 过拟合:把样本中的一些噪声特性也学习下来了...过拟合与正则化 通知正则化添加参数“惩罚”,控制参数幅度 限制参数搜索空间,减小过拟合风险 image 1.3 广义线性模型 对于样本 image 如果我们希望用线性的映射关系去逼近y值 可以得到线性回归模型...MSE:评估与标准答案之间的差距 梯度下降 沿着损失函数梯度方向逐步修正参数 学习率影响 模型状态 欠拟合 过拟合 广义线性回归 对线性映射的结果进行数学变换,去逼近y值 指数(exp)或者对数
2、线性拟合 #!...learning_rate = 0.01 training_epochs = 100 # 初始化线性模拟数据 x_train = np.linspace(-1, 1, 101) y_train =...将输入和输出节点设置为占位符,而真实数值将传入 x_train 和 y_train X = tf.placeholder("float") Y = tf.placeholder("float") # 将回归模型定义为...(实际结果到最佳拟合曲线的垂直投影)。...# 定义成本函数 y_model = model(X, w) #tf.square()是对每一个元素求平方 cost = tf.square(Y - y_model) # 有了线性模型、成本函数和数据
本文对吴恩达老师的机器学习教程中的正规方程做一个详细的推导,推导过程中将涉及矩阵和偏导数方面的知识,比如矩阵乘法,转值,向量点积,以及矩阵(或向量)微积分等。...求θ的公式 在视频教程中,吴恩达老师给了我们一个如下图红色方框内的求参数 θ 的公式 ? 先对图中的公式简单的说明一下。...公式中的 θ 是 n+1 元列向量,y 是m元列向量,X 是一个 m 行 n+1 列的矩阵。...具体到上图中的例子,X 和 y在上图已经有了,它们都是已知的值,而未知的 可以通过图中的公式以及X和y的值求出来,最终得到假设函数(hypothesis function)为 假设函数和代价函数 多元线性回归的假设函数和代价函数如下...代价函数 是一个关于向量的函数,而函数中的其它常量又是矩阵,所以对该函数求导会涉及到矩阵和向量的微积分知识,因为这方面的知识对机器学习来说实在是太重要了,而且一般的数学书上也没有相关内容,所以我打算专门写一篇文章来介绍矩阵和向量相关的微积分基础知识
本文记录岭回归角度进行线性回归的方法。...问题描述 考虑一个线性模型 {y}=f({\bf{x}}) 其中y是模型的输出值,是标量,\bf{x}为d维实数空间的向量 线性模型可以表示为: f(\bf{x})=\bf{w} ^Tx,w\in...\mathbb{R} 线性回归的任务是利用n个训练样本: image.png 和样本对应的标签: Y = [ y _ { 1 } \cdots \quad y _ { n } ] ^ { T } \quad...y \in \mathbb{R} 来预测线性模型中的参数 \bf{\omega},使得模型尽可能准确输出预测值 线性回归 / 岭回归 岭回归就是带有L_2正则的线性回归> 之前最小二乘法的损失函数...: L(w)= w^{T} X{T{\prime}} X w-2 w^{T} X^{T} Y+Y^{T} Y 岭回归的代价函数: image.png 上式中 \lambda 是正则化系数,现在优化的目标就转为
线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系。...回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题转化为分类问题,回归分析是一个有监督学习问题。...线性其实就是一系列一次特征的线性组合,在二维空间中是一条直线,在三维空间中是一个平面,然后推广到n维空间,可以理解高维广义线性吧。线性回归实现和计算都比较简单,但是不能拟合非线性数据。...线性模型,简单吧 X = 2 * np.random.rand(100, 1) y = 4 + 3 * X + np.random.randn(100, 1) lin_reg = LinearRegression...今天就是这些了,有些少,早上睡懒觉了,晚上有个考研讲座要去听(关于我们专业的,不是数学、英语,政治的),over
设:$$y=ax_1+b_x2$$ 这公式那么一写阿,瞅起来像是一个线性模型,简单理解也就是一条线嘛。...也就是说,整个公式中,只有θT是未知的。...有了公式,现在回头来看看真实的问题和真实的数据该怎么处理: House Prices: Advanced Regression Techniques 房价:先进的回归技术 housing = pd.read_csv...将上述输出汇总成序列,输出到 labels 中,codes里面其实就是存储我们输入序列中互异的元素,即上面的'a', 'b', 'c'。...,看看能获得什么样的分数: [在这里插入图片描述] 结果显示并不是很好,当然,我们还有好多因素没有考虑,不过,线性回归,我们就先讲到这里,后续我们有更好的方法来买房。
理论 回归问题通常用于连续值的预测,可以总结为给定x, 想办法得到f(x),使得f(x)的值尽可能逼近对应x的真实值y。...假设,输入变量x与输出值y成线性关系,比如随着年龄(x)增大, 患癌症的概率(y)也会逐渐增大。...于是,定义一个用来评价预测值与真实值之间的误差的函数loss: loss = ∑_i (w * x_i + b - y_i) 我们认为当这个损失函数最小的时候能够得到不错的w和b,从而获得不错的估计值。...[image.png] 梯度下降算法的核心就是一个函数的导数是指向函数值的增长方向的。因此当导数值变化的时候,我们就可以得到函数的极小值。...总结,目标是得到w’和b’,为了得到这两个值我们使用了一个损失函数,损失函数最小的时候的可以得到最优的w’和b’,为了得到最小的损失函数我们使用梯度下降方法。
统计学习方法 算法(线性回归) 策略(损失函数) 优化(找到最小损失对于的W值) 线性回归 寻找一种能预测的趋势 线性关系 二维:直线关系 三维:特征,目标值,平面当中 线性关系定义 h(w)=w0...+w1x1+w2x2+… 其中w,x为矩阵: w表示权重,b表示偏置顶 损失函数(误差大小:只有一个最小值) yi为第i个训练样本的真实值 hw(xi)为第i个训练样本特征值组合的预测函数 总损失的定义...:训练集表现良好,测试集表现不好 最小二乘法之梯度下降 理解:沿着损失函数下降的方向找,最后找到山谷的最低点,然后更新W值 学习速率:指定下降的速度 使用:面对训练数据规模十分庞大的任务 适合各种类型的模型...= std_y.inverse_transform(lr.predict(x_test)) # std_y.inverse_transform() 转换数据 print(lr.coef_) # 显示回归系数...需要转换 sdg_p = std_y.inverse_transform(sgd.predict(x_test).reshape(-1,1)) print(sgd.coef_) # 显示回归系数 即
线性回归 线性回归预测函数: 逻辑回归预测函数: 线性回归损失函数: 逻辑回归损失函数: MSE直接应用到LR中会导致损失函数变成非凸函数,所以我们加入log让损失函数变成了凸函数...+结构损失): 两者损失函数求导后,除了假设函数不一样,表示形式是一样的: 损失函数中参数倍数变化并不会影响最优值的最终结果 1.1 逻辑回归LR(logistic regression)...当我们把线性回归的代价函数放到逻辑回归上使用时,会发现代价函数J由凸函数(convex)变成了有很多局部最大值的非凸函数,导致寻找最小值变得困难,所有我们选择了另一种能使LR变成凸函数的代价函数。...分析 化简 得到如下结果,使用了==极大似然法==(能够在统计学中能为不同模型快速寻找参数),并且结果是凸函数 参数梯度下降: ==可以发现,求导后线性回归和逻辑回归的公式是一样的,但是他们的假设函数...1.2.2 缺点 实现比梯度下降法复杂很多,但是基本上都有封装好的库,如python中的scipy.optimize.fmin_bfgs 1.3 逻辑回归的多分类任务 训练多个逻辑回归分类器,然后将输入放到各分类器中
于是我又找到吴恩达的Marchine Learning课程,再次学习了线性回归和Logistic回归。...Machine Leanring这门课程是先从线性回归讲起,然后再介绍的Logistic回归,个人感觉这样的次序更容易理解。...一旦有了这些回归系统,再给定输入,做预测就非常容易。 回归中使用得最多的就是线性回归,而非线性回归问题也可以经过变化,简化为线性回归问题。比如有如下图所示的数据集: ? 可以通过引入高阶多项式: ?...在实践中,当n超过10,000时,采用梯度递减算法更合适。 小结 在《机器学习实战》第8章,还介绍了局部加权线性回归。...就拿线性回归来说,我们需要了解什么情况下使用梯度递减法、alpha值的选择,如何判断迭代是否收敛等等。也就是说,有了对算法的了解,我们可以在实际中更好的选择合适的算法,更好的调整参数。
本文将从一元线性回归推广到多元线性回归。并通过统计学的显著性检验和误差分析从原理上探究多元线性回归方法,以及该方法的性质和适用条件。 的预测的话——预测样本中不包含的结果,需要对样本是否具有代表性进行显著性检验,即这些样本能否在具有一定的统计概率的前提下我们能够相信这些通过对样本进行线性拟合所预测出来的结果在总体上具有普遍性...对于一次函数的线性回归模型,我们需要检验回归得到的系数是否显著,同时要检验回归得到的方程是否显著。...公式描述: 令: 则原方程可表示为: Y=X\beta + \varepsilon 解决思路: 检查影响因素的取值中是否有线性相关,即剔除 X 系数矩阵中的线性相关的列,即剔除多余影响因素...回归方程的显著性 首先需要对每个单个回归系数进行t检验,以确保他们每个都能够保证支持原假设成立,否则对于接受了原假设的某个参数 \beta _i 需要将其对应的X矩阵中的列清楚,重新拟合多项式。
领取专属 10元无门槛券
手把手带您无忧上云